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Abstract
The emergence of Large Language Model-enhanced Search En-
gines (LLMSEs) has revolutionized information retrieval by inte-
grating web-scale search capabilities with AI-powered summariza-
tion. While these systems demonstrate improved efficiency over
traditional search engines, their security implications against well-
established black-hat Search Engine Optimization (SEO) attacks
remain unexplored.

In this paper, we present the first systematic study of SEO at-
tacks targeting LLMSEs. Specifically, we examine ten representative
LLMSE products (e.g., ChatGPT, Gemini) and construct SEO-Bench,
a benchmark comprising 1,000 real-world black-hat SEO websites,
to evaluate both open- and closed-source LLMSEs. Our measure-
ments show that LLMSEs mitigate over 99.78% of traditional SEO
attacks, with the phase of retrieval serving as the primary filter,
intercepting the vast majority of malicious queries. We further pro-
pose and evaluate seven LLMSEO attack strategies, demonstrating
that off-the-shelf LLMSEs are vulnerable to LLMSEO attacks, i.e.,
rewritten-query stuffing and segmented texts double the manip-
ulation rate compared to the baseline. This work offers the first
in-depth security analysis of the LLMSE ecosystem, providing prac-
tical insights for building more resilient AI-driven search systems.
We have responsibly reported the identified issues to major ven-
dors.
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1 Introduction
Among the emerging applications of large language models (LLMs),
the large language model-enhanced search engine (LLMSE) com-
bines the vast search capabilities of the Web with efficient and pre-
cise responses to user queries. Due to their objectivity and ability to
synthesize information, LLMSEs are increasingly being regarded as
alternatives to traditional search engines. For instance, Perplexity,
raise funds at an $18 billion valuation in early 2025 [7].

Figure 1 illustrates a comparison between LLMSE and traditional
search engines. The user begins by inputting a query to a practical
problem, such as “Impact of LLMSE?”. The traditional search en-
gines return several separate Web sources of information, e.g. news,
forums. while LLMSE directly generates a well-structured response
providing clearer information in a well-defined overview.

Despite these advantages, are LLMSEs truly more reliable than
traditional search engines? Search engine optimization (SEO) [10],
including black-hat SEO [32, 35, 43, 47, 64, 67], has damaged search
result quality on the traditional search engines for decades. With
many attackers now turning to LLMSEs, likely reusing established
SEO methods and even inventing new manipulations, the emerging
LLMSE systems are facing a qualitatively new threat, underscoring
the urgency of understanding and mitigating such risks.
Research Gap. Despite the growing deployment of LLMSEs, their
security under SEOmanipulation remains insufficiently understood.
On one hand, as a rapidly emerging field, most work on LLMSEs
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Figure 1: Examples of Traditional Search Engines vs. LLM-
Enhanced Search Engines (LLMSE).

focuses on improving search efficiency, accuracy, and verifiabil-
ity [39, 42, 57, 65]. On the other hand, the security-related works
pay attention to the model-level attack techniques[1, 45, 54, 70]. For
example, PoisonedRAG [70] manipulates RAG results by poisoning
knowledge databases, and GEO [1] tries to craft text-optimization
attacks to gain visibility in the model summary. However, these
methods are typically evaluated in carefully crafted experimental
settings, only partial components of the LLMSE workflow, neglect-
ing their impact on the end-to-end system in real-world scenarios.
Luo et al. [42] observed the harmful content and malicious URLs
from LLMSE. However, they do not analyze these threats from the
perspective of traditional SEO techniques or assess their phase-
specific vulnerabilities. Moreover, how traditional black-hat SEO
threats affect LLMSE remain underexplored, posing persistent and
transferable risks to evolving LLMSE infrastructures.
Our Work. We conduct the first systematic study to investigate
the black-hat SEO threat to LLMSE. We try to answer the following
three important research questions (RQ):

RQ1: What is LLMSE workflow and whether the design of LLMSE
is inherently resistant to SEO manipulations?

RQ2: Will black-hat SEO attacks on traditional search engines
affect LLMSE? If so, how do they affect each phase?

RQ3: Are there any LLMSEO techniques that can significantly
manipulating LLMSE results?

Driven by these RQs, we first investigated 10 popular LLMSE
products and analyzed the special workflow of LLMSE, revealing the
attack surfaces. Second, we examined the effectiveness of traditional
black-hat SEO techniques on LLMSEs. We constructed SEO-Bench
with 1,000 real-world black-hat SEO attacks and then evaluated the
defense performance of open-source and closed-source LLMSEs
against these attacks. We further conducted a detailed empirical
analysis at different phases to uncover the preferences. Finally, we
propose seven LLMSEO strategies and conduct an end-to-end ex-
periment based on the 450 self-deployment websites. All identified
issues were responsibly disclosed to major LLMSE vendors.
Contribution. This work makes the following three contributions.
• We provide a detailed investigation of real-world LLMSE prod-
ucts, uncovering their multi-phase workflows and identifying
phase-specific attack surfaces.

• We reveal that the LLMSEs can resist over 99.78% traditional
black-hat SEO attacks, with the Retrieval phase serving as the
primary filter, intercepting the vast majority of malicious queries.

• We report that LLMSEs are vulnerable to LLMSEO attacks, i.e.,
rewritten-query stuffing and segmented text, double the manip-
ulation rate compared to the baseline.

2 Background
2.1 LLMSE & Black-Hat SEO
LLMSE. LLM-enhanced search engines (LLMSEs), also known as
AI-powered search, combine real-time retrieval with generative
summarization and are now widely adopted. Perplexity reports
169M monthly visits [56], and ChatGPT officially added search ca-
pabilities in 2024 [29]. Prior work has examined their efficiency,
accuracy, and verifiability [39, 42, 57, 65], while adversarial stud-
ies explored visibility manipulation through GEO [1] and prompt
injection [45, 54].
Black-Hat SEO. Search Engine Optimization (SEO) refers to im-
proving website ranking and organic traffic through legitimate
means such as optimizing structure, content, and user experience.
In contrast, black-hat SEOmanipulates rankings by violating search
engine guidelines, aiming for short-term gains through techniques
such as link farms [64], keyword stuffing [47], search redirection [32,
34], cloaking [60, 63], semantic confusion through ad injection or
jargon obfuscation [36, 67], and long-tail keyword attacks [35, 37].

2.2 Threat Model
Motivated to promote specific websites, the attacker deliberately
modifies the structure or content of the websites so they are favor-
ably indexed by search engines.. When a victim user inputs certain
queries, LLMSE may surface these websites and incorporate the
link to the untrusted website into the generated responses.
Attacker’s Goal. The attacker’s objective is to induce LLMSEs
to embed attacker-controlled URLs within their responses. Since
link-bearing outputs directly guide users to promoted sites, our
analysis focuses on responses containing clickable references to
attacker-controlled domains (e.g. citations).
Attacker’s Capability.We assumed that the attacker controls mul-
tiple websites and has full authority to customize both content and
structure. However, the attacker has no access to the intermediate
outputs of the LLMSE.

3 Attack Surface Analysis of LLMSE
In this section, we surveyed the current popular LLMSE systems
across both open-source and closed-source markets. Through prac-
tical analysis, we can uncover the attack surface of each phase.

3.1 Representative LLMSE Collection
To gain a comprehensive understanding of the LLMSE ecosystem,
we systematically collected a list of actively deployed LLMSEs from
both industrial and open-source platforms. First, we searched key-
words such as “LLM search” and “AI search” via Google. We ex-
tracted products from the top 100 search results and selected the
five most frequently mentioned LLMSE products, which together
account for over 98% of the market [58], representing those with
the highest visibility and usage. Second, we surveyed popular open-
source repositories in “LLM search” and selected the top five LLMSE
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Figure 2: The Workflow and the Attack Surfaces of LLMSE. It includes three phases: (1) Understanding: LLMSE analyzes user
query’s intent and rewrites the original query; (2) Retrieval: fetching information from multiple databases with the rewritten
queries, and re-ranking references; (3) Summarizing: gathers all the structured information and generates the final answer,
outputting the summary content and references.

Table 1: Overview of Representative LLMSEs

LLMSE Provider Popularity Pub. Date API

Closed Source

ChatGPT Search [50] OpenAI 5.91B Visits 2024-10-31 Y
Gemini Grounding [20] Google 1.06B Visits 2024-10-31 Y
Google AI Overview[22] Google 88.5B Visits 2024-05-14 N
Perplexity [53] Perplexity 169M Visits 2022-12-07 Y
Komo AI [28] Komo 201k Visits 2023-01-18 Y

Open Source

Open WebUI [9] Open WebUI 112k Stars 2023-10-07 Y
Khoj [8] Khoj AI 31.3k Stars 2021-04-04 N
Storm [30] Stanford OVAL 27.5k Stars 2024-04-09 Y
Perplexica [25] ItzCrazyKns 26.4k Stars 2024-04-09 Y
GPT Researcher [12] Assaf Elovic 23.7k Stars 2023-05-12 Y

1) Monthly visits counts are from SimilarWeb [56]; # of stars are from Github.
2) Google AI Overview is an internal experiments module of Google Search.
3) All statistics are collected as of September 2025.

projects with over 10k stars from Github [15], reflecting strong com-
munity adoption. In total, we identified 10 representative LLMSEs,
whose identities and popularity are summarized in Table 1.

3.2 Attack Surface Analysis
We conduct a comprehensive analysis on the collected LLMSE
to uncover LLMSE attack surfaces. For closed-source LLMSE, we
systematically reviewed their homepage descriptions and official
documentation, and manually interacted with them to observe user-
facing outputs. For open-source LLMSE, we deployed them locally
and analyzed their outputs and server-side logs to expose inter-
mediate processing. The workflow and the corresponding attack
surface of LLMSE are summarized in Figure 2.
Phase 1: Understand the Query. LLMSE understands the user’s
input , and provide actionable guidance for subsequent phases. This
process contains two main components:

(1.1) Intent Analysis: Infer user intent and decide whether ex-
ternal retrieval is needed (e.g. ChatGPT [49], Gemini [19]). This
step filters irrelevant or malicious parts of the query, helping de-
fend against attacks like irrelevant keyword stuffing and semantic
confusion. However, LLM-driven inference remains susceptible to
adversarial attacks such as prompt injection or jailbreaks [40].

(1.2) Query Rewriting: Rewrite the user input into one or more
standardized queries [62]. Among the examined LLMSEs, 8/10
clearly indicate that they actively regenerate queries, often adopting
a role-playing strategy [14, 26]. This step helps normalize phrasing
and defend against adversarial manipulations based on typographic
variations or misleading phrasing, e.g. the long-tail SEO [35] and
non-sense keyword SEO [38]. However, it might be exploited if
attackers can predict rewritten queries and tailor stuffing attacks
accordingly, as further discussed in Section 5.
Phase 2: Retrieve the Information. In this phase, the LLMSE exe-
cutes the rewritten queries to gather candidate retrieved references
and their content for subsequent processing.

(2.1) Fetching: Employ external engines (e.g.Google [23], Tavily [59])
or inner database to fetch potentially relevant results. Some LLM-
SEs can restrict the search scope to curated domains [51, 52] to
improve reliability. The diversity of retrieval sources helps mitigate
single-source poisoning.

(2.2) Re-ranking: Scoring each retrieved content [19] and filter
for relevance. The re-ranking process filters out spam-driven SEO
abuse such as link farms, but its underlying scoring heuristics may
unintentionally bias page selection, which we further examine in
Section 4.4 and explore its attack implications in Section 5.
Phase 3: Summarize the Answer. After retrieval, LLMSE syn-
thesizes the summary and typically includes in-text citations or
references to enhance credibility.

(3.1) Summary Generation: Summarize a coherent and logically
consistent response. Apart from ChatGPT and Gemini, most LLM-
SEs rely on external LLMAPIs for content synthesis [62], with some
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integrating multiple LLMs [13]. It improves factual consistency and
filters out spam or semantic-confusion content, yet remains vulner-
able to adversarial text that can hijack model attention [45].

4 Resilience of Black-Hat SEO Attack
Since LLMSEs are similar to traditional search engines, attackers in-
tuitively apply existing black-hat SEO techniques to them. To assess
how traditional black-hat SEO affects LLMSEs and dissect how the
multi-phase mechanisms mitigate or amplify these manipulations,
we conduct a comprehensive evaluation of LLMSE resilience with
a large-scale real-world black-hat SEO attacks in this section.

4.1 Experiment Setup
To evaluate the resilience of LLMSEs against black-hat SEO attacks,
we use Google Search as a representative traditional search engine
to collect real-world successful attacks. An attack succeeding on
Google but failing on an LLMSE indicates resilience. All samples
from existing attacks ensure both ethical compliance and diversity.
SEO-Bench Construction. To find black-hat SEO websites, we
first conducted a literature review, getting five categories of black-
hat SEO attack techniques that have well-established definitions:
❶ Semantic Confusion: blends copied legitimate text with illicit pro-
motions to dilute malicious intent, which raises ranking and evades
filters; ❷ Redirection: exploits vulnerabilities on high-authority sites
to forward users to promoted targets, thereby inheriting the trusted
site’s credibility; ❸ Cloaking: detects crawlers via request headers
and serves SEO-optimized content to search engines while pre-
senting different promotional or unrelated content to real users; ❹

Keyword Stuffing: embeds excessive or trending terms to inflate ap-
parent relevance and manipulate ranking algorithms; ❺ Link Farm:
creates large interlinked networks of low-quality sites to artificially
raise link-based authority scores. Based on these studies, we re-
produced the classification methods proposed in the corresponding
works and tuned the respective classifiers. The implementation and
evaluation are provided in Appendix A.

Then, we selected appropriate origin keyword queries, including
illegal-words and hot-words. Illegal-words typically involve terms
related to illegal or prohibited content, reflecting the underlying
incentives for black-hat SEO; we extracted 2,499 illegal-words from
prior studies [33, 36, 60, 67, 69]. Hot-words include popular search
terms unrelated to the actual page content, which attackers use to
boost visibility in rankings; we collected 9,301 hot-words from
Google Trends [18] over a six-month period (Nov. 2024 – Apr.
2025). We then queried these 11,800 keywords on Google, and saved
the top 50 search results, including their titles, summaries, URLs,
redirection chains, and HTML content. From over 500M collected
websites, we identified 1,602 valid query-website pairs by the
classifiers. To ensure a balanced representation of each attack type
in the dataset, we selected 200 pairs for each of the five SEO attack
categories. As a result, our SEO-Bench dataset consists of a total of
1,000 query-website pairs. Table 2 shows the dataset details.
LLMSE Defense Evaluation. We evaluate nine LLMSEs intro-
duced in Section 3, excluding Google AI Overview due to its limited
and unstable availability [17]. For closed-source LLMSEs, we select
their first version with full search functionalities, i.e., gpt-4o-mini,
gemini-1.5, sonar, komo. For open-source LLMSEs, we deploy

Table 2: Details of Black-Hat SEO Attacks in SEO-Bench

Black-Hat SEO Attack Query Classification Method #

Semantic Confusion [36, 66, 67] Illegal-words SCDS [66] 200
Redirection [33, 34, 44, 61] Illegal-words Rule-Based Detector [33] 200
Cloaking [24, 46, 60, 63] Illegal-words Dagger [60] 200
Keywords Stuffing [3, 41, 48, 68] Hot-words Rule-Based Detector [48] 200
Link Farm (SSP) [6, 11, 27, 64] Hot-words DNS Scanner [11] 200

them locally with default configurations, and use gpt-4o-mini as
the summarization model to ensure comparability across systems.

To quantify the resilience of LLMSEs against black-hat SEO
attacks, we evaluate their ability to block target websites across
different phases. Each entry in SEO-Bench is a query–website pair
(𝑞𝑖 , 𝑡𝑖 ), where 𝑞𝑖 is a search query and 𝑡𝑖 is the associated black-
hat SEO website. We independently evaluate the resilience of each
phase using a phase-specific blocking rate, defined as the propor-
tion of attacks intercepted at that phase among those entering the
phase. Specifically: In Understanding phase, an attack is blocked if
the LLMSE decides not to proceed with retrieval after analyzing,
indicating an early rejection of the search. In Retrieval phase, an
attack is blocked if the LLMSE performs retrieval but the SEO web-
site does not appear in the retrieved results. In Summarizing phase,
an attack is blocked if the SEO website appears in the retrieval
reference but is excluded from the final reference. We also employ
Cumulative Resilience to intuitively capture the overall interception
achieved after each phase. The metrics are in Appendix B.

4.2 Landscape
We assess nine LLMSEs with three trials per query (27,000 requests).
Results are summarized in Table 3.

Our evaluation shows that LLMSEs are highly effective against
black-hat SEO attacks, with the Understanding, Retrieval, and Sum-
marizing phases blocking 15.7%, 98.2%, and 85.2% of attacks at their
respective phases. Overall, they achieve a cumulative blocking rate
of 99.78%, where Retrieval plays the most decisive role by filter-
ing the majority, and Summarizing adds a strong safeguard before
output generation. These results highlight the importance of lay-
ered defenses in LLM-based systems, enabling them to significantly
outperform traditional search engines in resisting SEO attacks.

Although the results show that black-hat SEO techniques can
still influence LLMSEs, the resilience varies significantly across
LLMSEs. ChatGPT is not affected by any black-hat SEO attack with
a high refusal rate. Notably, open-source LLMSEs keep great defense
performance, due to the fact that they choose the search engine
API such as Tavily [59] or SearXNG [55], which provide optimized
source. In contrast, Komo and Perplexity are most affected.

The impact of different types of black-hat SEO attacks on LLMSEs
varies as well. Semantic Confusion and cloaking pose the greatest
risks in the final output to LLMSEs. For example, Komo is severely
affected by Semantic Confusion, with a low filtering of 83.0% and
73.5%. Meanwhile, Gemini is only affected by Semantic Confusion.
In contrast, although both redirection and cloaking attacks have
successfully passed the Retrieval phase on some LLMSEs, few of
them advanced to the Summarizing phase, thus failing to achieve a
successful attack on the Summarizing phase. Besides, the Keyword
Stuffing poses no influence on any LLMSE.
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Table 3: Performance of Black-Hat SEO Attacks on LLMSEs. Each item: Resilience (Und) / Resilience (Ret) / Resilience (Sum).

LLMSE Total Performance Semantic Confusion Redirection Cloaking Keywords Stuffing Link Farm

ChatGPT 75.8% / - / 100% 92.5% / - / 100% 79.0% / - / 100% 84.0% / - / 100% 62.0% / - / 100% 61.5% / - / 100%
Gemini 16.3% / - / 99.8% 38.0% / - / 99.0% 4.5% / - / 100% 24.0% / - / 100% 3.0% / - / 100% 12.0% / - / 100%
Perplexity 4.6% / 98.2% / 64.7% 12.0% / 94.9% / 55.6% 1.5% / 99.0% / 50.0% 6.0% / 97.9% / 100% 0 / 100% / - 3.5% / 99.0% / 50.0%
Komo 4.2% / 94.9% / 67.3% 0 / 83.0% / 73.5% 1.0% / 99.0% / 100% 20.0% / 93.8% / 50.0% 0 / 100% / - 0 / 98.5% / 33.3%
Open-WebUI 8.1% / 96.0% / 100% 12.1% / 93.1% / 100% 0 / 100% / - 7.7% / 91.7% / 100% 0 / 100% / - 17.9% / 95.7% / 100%
Khoj 30.9% / 99.6% / 100% 61.0% / 100% / - 19.5% / 100% / - 36.5% / 100% / - 16.5% / 100% / - 21.0% / 98.1% / 100%
Storm 0 / 99.8% / 50.0% 0 / 100% / - 0 / 100% / - 0 / 100% / - 0 / 100% / - 0 / 99.0% / 50.0%
Perplexica 0 / 100% / - 0 / 100% / - 0 / 100% / - 0 / 100% / - 0 / 100% / - 0 / 100% / -
GPT Researcher 1.4% / 95.5% / 100% 0 / 88.5% / 100% 0 / 97.5% / 100% 0 / 95.0% / 100% 3.0% / 100% / - 3.9% / 98.0% / 100%

Average Res. 15.7% / 98.2% / 85.2% 24.0% / 95.4% / 88.0% 11.7% / 99.5% / 90.0% 19.8% / 97.6% / 91.7% 9.4% / 100.0% / 100.0% 13.3% / 98.7% / 79.2%

Cumulative Res. 15.7% / 98.48% / 99.78% 24.0% / 96.50% / 99.58% 11.7% / 99.56% / 99.96% 19.8% / 98.08% / 99.84% 9.4% / 100.00% / 100.00% 13.3% / 99.00% / 99.96%

▶ Finding I: LLMSEs exhibit strong resilience to black-hat
SEO attacks, achieving the cumulative blocking rate of 99.78%.
Retrieval phase intercepts the vast majority of malicious queries.
Semantic Confusion poses the greatest risks to LLMSEs.

4.3 Resilience on Understanding Phase
Firstly, we measure how LLMSEs interpret and rewrite the query
in the Understanding phase helps mitigate black-hat SEO attacks.
Intent Interception. Upon receiving a user query, LLMSEs infer
its intent to decide whether a web search is necessary. We ana-
lyze the interception mechanism by inspecting the specific API
field values, as ChatGPT and Gemini explicitly indicate whether
“web_search” is invoked. Then we manually check these refused
queries and corresponding answers. In our result, 75.8% of queries
on ChatGPT are intercepted with no reference. Among them, 30.6%
are refused due to violations of safety policies, and 69.4% are skipped
due to intent misinterpretation, where the system treats the input
as a statement rather than a search query. This is because, unlike
dedicated search engines, LLMSEs such as ChatGPT, which treat
search as an auxiliary function, tend not to invoke search when
they can answer based on internal knowledge. Similarly, Gemini
intercepts 16.3% of queries, with 67.4% refusals and 32.6% misinter-
pretations. Although intent interception is not designed to counter
SEO attacks, it can incidentally filter harmful or illicit queries before
search execution, thereby reducing exposure to malicious content.

▶ Finding II: Intent interception enables LLMSEs such as Chat-
GPT to filter out 75.8% of queries, effectively disrupting mali-
cious SEO attempts at the start, even though unintentionally.

Query Rewriting. Before performing a real search in the Retrieval
phase, some LLMSEs generate a refined version of the original
query. To investigate how this step influences the effectiveness of
SEO-based manipulations, we extract the rewritten keywords on
five of the collected LLMSEs that provide the rewritten queries in
their API response, and compare them with the original inputs. Our
analysis reveals that almost all of them prefer to rewrite the query.
Figure 3 shows the changes in word count during the rewriting. For
example, GPT Researcher shows a strong tendency to expand the
query (77.56%), while others are more likely to shorten it. Further
examination of the system prompts indicates that the rewriting
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Figure 3: Distribution of Word Counts after Rewriting.

mechanisms, such as prefix/suffix modifications, query formatting,
and targeted semantic enrichment, are guided by instructions aimed
at improving search accuracy and user experience.

To further examine how rewriting can mitigate the influence of
black-hat SEO, we conducted a supplementary validation exper-
iment on query rewriting. As detailed in Appendix C, reissuing
rewritten queries to Google Search showed that 98.16% failed to
retrieve the original SEO websites, with even minor edits (edit
distance below 0.1) reducing attack success rates to under 10%, con-
firming the strong disruptive impact of rewriting on adversarial
rankings. These results indicate that even slight syntactic modifica-
tions can substantially suppress exposure, suggesting that query
rewriting serves as an effective and lightweight countermeasure.

▶ Finding III: Query rewriting by LLMSEs effectively disrupts
SEO attacks, including Long-tail and Keyword Stuffing. Even
small edits can reduce the attack success rate to under 10%.

4.4 Resilience on Retrieval Phase
Then, we measure how fetching and re-ranking in the Retrieval
phase helps mitigate black-hat SEO attacks.
Fetching Preferences. LLMSEs can restrict the search scope
during fetching, so we examine whether their returned links are
of higher quality than those from traditional engines. Using do-
main rankings [31], we analyze retrieved references collected from



WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates. Pei Chen et al.

trending queries. As shown in Figure 4, most LLMSEs favor higher-
ranked domains, with top-5k links appearing more frequently than
lower-ranked ones. For instance, ChatGPT’s share of authoritative
links is nearly 50% higher than Google’s. In contrast, LLMSEs such
as Khoj and Perplexica exhibit over 60% unreliable links due to hal-
lucinated URLs. However, while prioritizing authoritative sources
improves result reliability and reduces SEO risks, excessive trust in
high-ranking domains may introduce new vulnerabilities, such as
malicious redirects or comment-based attacks on reputable sites.

▶ Finding IV: LLMSE fetching preferences for authoritative
websites enhance the overall search quality, but also emphasize
the risk of compromised high-ranking sources.

Re-ranking Preferences. After fetching the content of web pages,
LLMSEs often re-rank them based on internally defined quality
assessment criteria. To investigate this preference, we examine the
rank shifts of links that appear in both Google search results and
LLMSEs. For each link that occurs in both result sets, we compute
its relative rank change within the respective systems as

∆RelRank𝑖 = Rank𝑖LLM − Rank𝑖Google (1)

where Rank𝑖Google denotes the relative rank of the 𝑖-th link within the
set of overlapping links in the Google search results, and Rank𝑖LLM
denotes its relative rank in the LLMSEs results. To further uncover
the re-ranking criteria employed by LLMSEs, we categorize web-
sites with increasing relative rankings (i.e., ΔRelRank𝑖 < 0) as up
sites, and those with decreasing relative ranks (i.e., ΔRelRank𝑖 > 0)
as down sites. Then, we analyze several common features of the
websites by computing the average values and their corresponding
rates of differences, as summarized in Table 4.

The results indicate that websites with increased rankings in
LLMSEs typically exhibit a higher degree of text fragmentation
(+19.04%) and a greater presence of multimodal resources (+18.71%)
in terms of content. Structurally, they tend to feature denser internal
linking (+14.89%) and greater DOM depth (+11.36%), which reflects
a higher level of formatting complexity. These observed differences
suggest a set of potentially influential factors that may reflect the
preferences of LLMSEs. We will further examine their actual impact
through controlled experiments in Section 5.

▶ Finding V: During the re-ranking, LLMSEs tend to favor
webpages with higher content quality and content richness.

4.5 Resilience on Summarizing Phase
Finally, we measure summary intercepting of Summarizing phase.
Summary Interception. To evaluate LLMSE resilience against
illicit promotion during summary generation, we examine their
ability to filter malicious content from illegal queries. We use an
illicit-website classifier (Appendix A) to measure the proportion of
illegal references in Retrieval and Summary phases. Additionally,
we analyze the semantics of the responses to determine how many
illicit links contaminate the generated summaries. As shown in
Table 5, LLMSEs increasingly block malicious content as generation
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Figure 4: Domain Rank Proportions of Retrieved References
from Both Traditional Search Engines and LLMSEs.

Table 4: Different Features of Re-Ranked Websites

Features Avg. (Up) Avg. (Down) Differences P-value

Text Fragmentation 60.09 50.48 +19.04% 0.0100
DOM Depth 13.93 12.51 +11.36% 0.0036
Tag Diversity 22.61 22.27 +1.543% 0.8674
External Link # 14.71 15.81 -6.971% 0.9901
Internal Link # 45.66 39.74 +14.89% 0.0003
Multi-modal # 12.50 10.53 +18.71% 0.0292
Meta Completeness 0.4167 0.4196 -0.6911% 0.8809
Alt Coverage 0.2899 0.2873 +0.9050% 0.8540

If p-value < 0.05, the difference is considered statistically significant [4].

Table 5: Illegal Proportion in Different Phases.

LLMSE Retrieved
References

Summary
References (𝛿)

Summary
Content (𝛿)

ChatGPT – 2.00% (–) 2.00% (0.0%)
Gemini – 0.00% (–) 0.00% (0.0%)
Komo 4.36% 1.53% (↓ 64.9%) 0.28% (↓ 81.7%)
Perplexity 0.69% 0.35% (↓ 49.3%) 0.00% (↓ 100.0%)
GPT Researcher 10.07% 3.48% (↓ 65.4%) 1.55% (↓ 55.5%)
Perplexica 1.24% 0.19% (↓ 84.7%) 0.00% (↓ 100.0%)
Khoj 1.27% 0.05% (↓ 96.1%) 0.00% (↓ 100.0%)
Open-WebUI 10.98% 0.23% (↓ 97.9%) 0.00% (↓ 100.0%)
Storm 1.61% 0.50% (↓ 69.0%) 0.00% (↓ 100.0%)

Avg. 4.89% 0.92% (↓ 75.3%) 0.43% (↓ 70.8%)

proceeds. In the Summary phase, they remove on average 75.3%
more illegal links than in the Retrieval phase, with Open-WebUI
achieving the largest reduction (97.9%). Furthermore, 70.8% illicit
content is intercepted from the summary reference to the answer
content. These results indicate that LLMSEs generally favor neutral
or positive content and actively suppress outputs involving violence,
pornography, or other harmful material, reflecting their built-in
safety mechanisms and alignment with normative standards.

We further analyze intercepted SEO attacks in the Summarizing
phase, including Semantic Confusion and Cloaking. Such pages often
contain irrelevant or mixed content, weakening semantic relevance
to the query. For example, confusion attacks may embed illicit
promotions within otherwise legitimate text to enhance credibility.
Appearing benign, they diverge from the illegal intent and are
excluded from summaries. This suggests that, beyond rejecting
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harmful content, LLMSEs prioritize sources semantically aligned
with query intent, which further mitigates SEO attacks.

▶ Finding VI: LLMSEs prefer benign and semantically aligned
content in summarization, refusing additional 75.3% illegal
websites. This strategy further mitigates the threat of illicit
content and the impact of attacks such as Semantic Confusion.

5 LLMSEO Attack
Building on these findings, we propose and evaluate novel end-to-
end attacks tailored to LLMSEs, extending beyond prior work that
focused only on ranking or summarization components [1, 2, 70].

5.1 LLMSEO Attack Techniques
As each phase of the LLMSE workflow (Understanding, Retrieval,
and Summarizing) exposes distinct security risks, we design phase-
specific LLMSEO attack strategies to systematically evaluate and
manipulate these vulnerabilities.
Attacking Understanding Phase. In this phase, rewriting intro-
duces ambiguity and susceptibility to manipulation. To exploit this
vulnerability, we design a targeted attack.
• Rewritten-query Stuffing. Embed potential rewritten queries ex-
tensively within web pages. Since most LLMSE may not always
use the original search key for retrieval (Section 3), predicting
possible new queries and inserting them in web content can
increase the likelihood of being matched.
Note that while prompt injection is an important attack vector in

this phase (see Section 3), its impact is well studied [5, 40, 45, 54] and
highly prompt-dependent, so we exclude it from our experiments.
Attacking Retrieval Phase. Aiming to increase the priority in
re-ranking and inspired by Finding V, we propose new techniques
designed to align with the scoring mechanism.
• Internal Links. Embed numerous internal links within web pages
to construct a network, simultaneously increasing the number
of links to key pages.

• Multi-modal Resources. Incorporate multi-modal resources (e.g.
text, images, and videos) intoweb pages to increase their richness
and boost perceived credibility.

• Nested Structure. Use structured labels and indexing that are
better suited for retrieval to enhance the readability and accessi-
bility of content, helping LLMSE quickly locate and extract key
information, gaining an advantage in candidate selection.

• Segmented Text. Reduce the length of individual text segments.
Shorter texts are often more suitable for direct citation.

Attacking Summarizing Phase. To influence this phase, we de-
sign optimization strategies targeting both relevance and format.
• Relevance Enhancement. Focus on core keywords to enhance the
semantic relevance and coherence of the text to the query.

• Q&AFormatting. Present content in a question-and-answer (Q&A)
format in the conversational tone of LLM-generated responses,
increasing the likelihood of direct reuse by LLMSE.

5.2 Effectiveness Evaluation
To examine the applicability of these LLMSE attack techniques
influencing LLMSEs, we conducted a competitive experiment to

compare the efficacy of various attack strategies under real-world
conditions.
Methodology. To evaluate the effectiveness of different LLMSE
attack techniques, we deployed blog websites under a controlled
domain, each promoting a different brand of the same type of prod-
uct. We then queried LLMSEs for product recommendations using
domain-restricted prompts (Appendix D), and recorded the propor-
tion of recommended sites associated with each attack technique.
This restriction reduces ethical concerns arising from real-world
search pollution while enabling fair comparison across techniques.
A higher occurrence suggests a stronger alignment between the
corresponding manipulation and the preferences of the LLMSE.

To mitigate the impact of randomness in LLMSE responses, the
query was repeated 10 times per LLMSE, and we aggregated the to-
tal number of times each site appeared in the responses. In addition
to the seven LLMSE attack types, we included one non-SEO and
one traditional SEO attack (i.e. Semantic confusion, which showed
the best performance in Section 4.2) for baseline comparison. For
each attack type, 50 websites were created. In total, the experiment
involved 450 adversarial websites. To ensure ethical compliance, all
websites were labeled as “For Testing Purposes Only” and taken of-
fline after the experiment finished. This ensured minimal long-term
impact while maintaining the integrity of real-world testing.
Implementation.We implemented these LLMSE attacks across
various websites. Specifically, we first generated a set of products
using the same pattern, i.e. “Brand” + “Entity” noun, and generated
the base content with gpt-4o-mini. We also use the model for
Rewritten-query Stuffing, generating rewritten queries and embed-
ding them into web pages. For the Internal Links, we embedded
hyperlinks among the 50 websites of this type, forming mutual link-
ing connections in the “Useful Links” block. For the Multi-modal
Resources, we doubled the number of images in the base website
content to increase visual richness. In theNested Structure, we added
an additional layer of subheadings, expanding from second-level
to third-level headers to increase structural complexity. For the
Segmented Text, we restructured the content by halving the average
paragraph length, resulting in more segmented text blocks. For the
Relevance Enhancement, we removed the irrelevant part, e.g. teams,
and added more descriptions about products. In the Q&A Format-
ting, each paragraph was prefaced with a question, followed by a
corresponding answer block to simulate a question-answer format.
In the Semantic Confusion, we inserted a promotional segment into
unmodified news content.
Results. Table 6 presents the performance of LLMSEO attacks
on LLMSEs, where each row shows the proportion of a specific
attack type among all successful attacks. 1 Overall, all proposed
attacks demonstrated measurable effectiveness on LLMSEs, with
each achieving performance above the baseline in at least one
LLMSE. In all attacks, attacks targeting the Retrieval phase were
more effective. Segmented Text achieved the highest attack across
most LLMSE platforms, with an exposure rate exceeding 50% on
Perplexica and GPT-Researcher, indicating that LLMSEs are better
at understanding short and segmented content. The second most
effective technique was Rewritten-query Stuffing, which doubled the

1Notably, gpt-4o-mini and gemini-1.5 refused to access all provided URLs in this
experiment, likely due to stricter content-fetching policies [16].
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Table 6: Success Rate of LLMSEOAttacks on LLMSEs. The percentage in each row indicates the success rate of a specific approach
among all successful attacks. The bold numbers highlight the most effective attacks, and the up arrows (↑) indicate the most
improving attacks between Summarizing phase and Retrieval phase.

LLMSE Exposed Phase
Baseline Understanding Retrieval Summarizing

Blank Semantic
Confusion

Rewritten-query
Stuffing

Internal
Links

Multi-modal
Resources

Nested
Structure

Segmented
Text

Relevance
Enhancement

Q&A
Formatting

Perplexity Retrieval 7.29% 0.00% 19.79% 10.42% 8.33% 6.25% 28.12% 11.46% 8.33%
Summarizing 0.00% 0.00% 25.00% 12.50% 12.50% 0.00% 37.50% ↑ 12.50% 0.00%

Komo Retrieval 8.33% 0.00% 23.96% 10.42% 9.38% 1.04% 30.21% 10.42% 6.25%
Summarizing 2.44% 0.00% 26.83% 2.44% 4.88% 0.00% 41.46% ↑ 14.63% 7.32%

Open-WebUI Retrieval 9.09% 2.60% 27.27% 2.60% 3.90% 11.69% 28.57% 0.00% 14.29%
Summarizing 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Khoj Retrieval 12.38% 3.47% 16.34% 4.95% 6.93% 26.73% 17.33% 4.46% 7.43%
Summarizing 15.29% 1.18% 16.47% 4.71% 2.35% 30.59% 22.35% ↑ 1.18% 5.88%

Storm Retrieval 13.9% 1.36% 23.71% 10.08% 9.26% 15.80% 9.54% 4.90% 11.44%
Summarizing 14.03% 0.45% 16.29% 10.86% 11.31% 19.91% ↑ 8.14% 5.88% 13.12%

Perplexica Retrieval 20.25% 0.00% 7.59% 5.06% 3.8% 7.59% 45.57% 10.13% 0.00%
Summarizing 19.35% 0.00% 0.00% 6.45% 3.23% 6.45% 51.61% ↑ 12.9% 0.00%

GPT-Researcher Retrieval 0.00% 0.00% 21.74% 2.17% 6.52% 0.00% 65.22% 0.00% 4.35%
Summarizing 0.00% 0.00% 24.32% ↑ 2.70% 8.11% 0.00% 59.46% 0.00% 5.41%

exposure rate compared to the baseline in five LLMSEs, highlighting
its strong influence on downstream outcomes.

We further compare attack proportions across phases to assess
each phase’s filtering effects. As Summarizing proportions post-
Retrieval filtering, we focus on the attack effectiveness differences
between the two phases to capture summary interception. In Ta-
ble 6, we mark significant increases in attack proportions during
Summarizing. Content-driven strategies, such as Segmented Text
and Relevance Enhancement, show noticeable growth, while Seman-
tic Confusion, as well as link- and resource-based tactics (Internal
Links, Multi-modal Resources), tend to decline. This shift suggests
that, in Summarizing phase, LLMSE is more influenced by content
quality rather than the structure of external resources, underlining
the importance of content-level manipulation.

6 Discussion
Security Implications. The application of LLMSEs in information
retrieval reshapes user trust and the threat landscape of black-
hat SEO. Users over-rely on LLMSE-generated summaries and ref-
erences, perceiving them as authoritative, which magnifies the
risks when malicious content and links are included in trusted
outputs. Building upon traditional black-hat SEO, attackers are in-
creasingly adapting their strategies to the internal preferences of
LLMSEs, shifting content manipulation from isolated optimizations
to system-level adversarial interactions. As LLMSE adoption grows,
such weaknesses may gradually distort the Web’s credibility struc-
ture, highlighting the need for timely, robust defenses to support a
healthy information ecosystem and sustained user trust.
Mitigation. To mitigate the vulnerabilities identified in this study,
defenses for LLMSEs should be reinforced in a phase-aware manner
across the entire workflow. In the Understanding phase, analyz-
ing the stability of query rewriting and intent interpretation can
help detect inputs deliberately aligned with rewriting behaviors;
paraphrasing-based filtering, as shown in PoisonedRAG [70], can

counter poisoning attempts in RAG systems. During Retrieval, miti-
gation should go beyond static domain authority by incorporating
behavior-based signals, such as redirection patterns and cross-query
reference consistency, to identify abused high-credibility sources.
In the Summarizing phase, additional safeguards are needed against
prompt- or text-based manipulations embedded in retrieved pages
that may bias summarization preferences. Furthermore, user aware-
ness and transparency features, such as link provenance or credi-
bility indicators, are crucial to reduce over-reliance on generated
outputs and promote critical content verification, collectively en-
hancing the resilience of the LLMSE ecosystem.
Limitation. Our evaluation focused on ten representative LLMSEs
selected by user scale and popularity, though other systems beyond
this scope may demonstrate stronger resilience. For ethical reasons,
our implemented LLMSEO attacks were intentionally simplified and
deployed for limited durations; real-world adversaries may employ
more sophisticated or persistent methods, and the combined effects
of multiple strategies remain unexplored.

7 Conclusion
This work presents the first systematic security analysis of Large
Language Model-enhanced Search Engines (LLMSEs), revealing
how black-hat SEO continues to influence their behaviors. By ana-
lyzing phase-specific preferences and weaknesses, we demonstrate
effective LLMSEO attacks that exploit these vulnerabilities. We offer
insights into more secure and resilient AI-driven search systems.
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A Black-Hat SEO Website Classifier
A.1 Implementation
For five types of attacks, we replicated the methods from existing
works [11, 33, 48, 60, 66] for semi-automated detection. The specific
implementation is as follows:
Semantic Confusion.We use two models to complete the task. (1)
Context semantic classifier, used to predict the probabilities that a
web page belongs to 14 benign topics, outputting prob_14 (2) Mali-
cious web page classifier, used to predict the probability that a web
page is malicious, outputting prob_malicious. Both models are based
on the TextCNN architecture: Vocabulary Size = 10,000; Maximum
Sequence Length = 500; Embedding Dimension = 128; Convolution
Filter Sizes =[3,4,5]; Number of Filters per Size = 128; Pooling Layer
= GlobalMaxPooling1D; Dropout Rate = 0.5; Optimizer = Adam;
Batch Size = 64.

Judgment: max(prob_14) >0.9 And prob_malicious >0.9.
Redirection. We identify two types of redirection. (1) reputable
domain redirecting to malicious content ( Illegal search keywords +
Tranco Top 10,000 domain [31] or education/government domains
+ Redirection + Redirect to malicious website (2) benign search
redirecting to malicious content (Hot search keyword + Redirection
+ Redirect to malicious website). The malicious website classifica-
tion model uses the same Malicious web page classifier in Semantic
Confusion, outputting prob_malicious.

Judgment: prob_malicious >0.9.
Cloacking.We use the user agents of Google bot and users to crawl
and obtain the page content of the two views. (1) Use text slicing
techniques to generate content signatures and compare the similar-
ity (signature_sim) between the user page and the bot crawled page;
(2) Remove the blank pages; (3) Calculate the matching degree of the
summary on the user page and the bot crawled page(summary_sim)
(4) Calculate the DOM structure similarity (DOM_sim) of two views.

Judgment: signature_sim <0.9 And summary_sim >0.33 And
DOM_sim >0.66.
Keywords Stuffing.We consider the keywords in Google Trends [18].
(1) Compute the number of Google’s hot search terms matched on
the page, hotwords_count. (2) Use the “site:domain” query in Google
to determine whether the number of sub-pages is very large and all
are spam content. If both conditions are satisfied, then we consider
the page Keywords Stuffing.

Judgment: hotwords_count ≥ 10 And spam_subpages ≥ 100.
Link Farm. We conduct DNS queries supporting wildcards. Then
visit the homepage or sitemap twice and extract the set of hyperlinks
on it, and finally get URL set A and URL set B.

Judgment: max
(
|𝐴−𝐵 |
|𝐴 | ,

|𝐴−𝐵 |
|𝐵 |

)
≥ 0.2

A.2 Evaluation
To assess the effectiveness of our classifiers used in SEO-Bench con-
struction, we conducted a systematic evaluation for each of the five
attack categories. This section outlines the evaluation methodology
and presents the corresponding results.

For each classifier, we computed a confusion matrix based on
manual verification. Specifically, we sampled 100 websites that were
predicted as positive (label=1) and 100 websites predicted as neg-
ative (label=0). Each sample was manually checked to determine

https://doi.org/10.1145/1135777.1135794
https://platform.openai.com/docs/guides/tools-web-search
https://platform.openai.com/docs/guides/tools-web-search
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search
https://openai.com/index/introducing-chatgpt-search
https://docs.perplexity.ai/guides/getting-started
https://docs.perplexity.ai/guides/getting-started
https://www.perplexity.ai
https://doi.org/10.18653/v1/2024.emnlp-main.534
https://doi.org/10.18653/v1/2024.emnlp-main.534
https://docs.searxng.org/dev/search_api.html
https://docs.searxng.org/dev/search_api.html
https://www.similarweb.com/
https://www.similarweb.com/
https://arxiv.org/abs/2307.03744
https://arxiv.org/abs/2307.03744
https://arxiv.org/abs/2307.03744
https://gs.statcounter.com/ai-chatbot-market-share
https://gs.statcounter.com/ai-chatbot-market-share
https://docs.tavily.com/documentation/api-reference/introduction
https://docs.tavily.com/documentation/api-reference/introduction
https://docs.openwebui.com/
https://doi.org/10.1145/1062745.1062762
https://arxiv.org/abs/2404.03302
https://arxiv.org/abs/2404.03302
https://www.ndss-symposium.org/ndss2014/dspin-detecting-automatically-spun-content-web
https://www.ndss-symposium.org/ndss2014/dspin-detecting-automatically-spun-content-web


Unveiling the Resilience of LLM-Enhanced Search Engines against Black-Hat SEO Manipulation WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates.

whether the prediction matched the black-hat SEO characteris-
tics. From these manual labels, we derived standard classification
metrics including accuracy, precision, recall, and F1-score.

The overall accuracy across all classifiers was 91.12%, indicat-
ing sufficient reliability for use in dataset construction. Table 7-11
presents the confusion matrices for the five classifiers, providing a
detailed view of performance across different attack types.

Table 7: Evaluation Metrics for the Redirection classifier.

Predicted Positive Predicted Negative Total

Actual Positive 99 21 120
Actual Negative 1 79 80

Total 100 100 200

Accuracy: 89.0% Precision: 99.0%
Recall: 82.5% F1 Score: 89.4%

Table 8: Evaluation Metrics for the Cloaking classifier.

Predicted Positive Predicted Negative Total

Actual Positive 87 5 92
Actual Negative 13 95 108

Total 100 100 200

Accuracy: 91.0% Precision: 87.0%
Recall: 94.6% F1 Score: 90.6%

Table 9: Evaluation Metrics for the Keyword Stuffing classi-
fier.

Predicted Positive Predicted Negative Total

Actual Positive 89 0 89
Actual Negative 11 100 111

Total 100 100 200

Accuracy: 94.5% Precision: 89.0%
Recall: 100.0% F1 Score: 94.18%

Table 10: Evaluation Metrics for the Semantic Confusion
classifier.

Predicted Positive Predicted Negative Total

Actual Positive 77 4 81
Actual Negative 23 96 119

Total 100 100 200

Accuracy: 86.6% Precision: 77.0%
Recall: 95% F1 Score: 87.74%

Table 11: Evaluation Metrics for the Link Farm classifier.

Predicted Positive Predicted Negative Total

Actual Positive 92 3 95
Actual Negative 8 97 105

Total 100 100 200

Accuracy: 94.5% Precision: 92.0%
Recall: 96.8% F1 Score: 94.3%

B Evaluation Metrics
Resilience(Und) = |{(𝑞𝑖 , 𝑡𝑖 ) | Rewitten queries(𝑞𝑖 ) = ∅}|

|{(𝑞𝑖 , 𝑡𝑖 )}|
(2)

Resilience(Ret) = |{(𝑞𝑖 , 𝑡𝑖 ) | 𝑡𝑖 ∉ Retrieval references(𝑞𝑖 )}|
|{(𝑞𝑖 , 𝑡𝑖 ) | Rewitten queries(𝑞𝑖 ) ≠ ∅}| (3)

Resilience(Sum) = |{(𝑞𝑖 , 𝑡𝑖 ) | 𝑡𝑖 ∉ Summary references(𝑞𝑖 )}|
|{(𝑞𝑖 , 𝑡𝑖 ) | 𝑡𝑖 ∈ Retrieval references(𝑞𝑖 )}|

(4)

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑘 =

𝑘∑︁
𝑖=1

𝑐𝑖 , where 𝑐𝑖 =

(
1 −

𝑖−1∑︁
𝑗=1

𝑐 𝑗

)
· 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑖 . (5)

C Query Rewriting Validation Experiment
To validate the effectiveness of query rewriting against SEO attacks,
we resubmitted Rewitten queries to Google Search and observed
that 98.16% failed to retrieve the original SEO websites, demonstrat-
ing the approach’s strong disruptive impact. Then, we explore how
the degree of rewriting affects retrieval by measuring semantic and
syntactic differences using semantic textual distance (STD) and edit
distance (ED).

Table 12 shows that as semantic distance increases, the retrieval
success rate drops significantly. Notably, even syntactic changes
with an edit distance below 0.1 can reduce the success rate to under
10%, and when semantic similarity remains high (STD < 0.1), re-
trieval drops below 2% if the edit distance exceeds 0.2. Additionally,
we observe 44 rewritten queries with a semantic distance greater
than 0.5, indicating reversed or contradictory meanings (cosine
similarity < 0).

This contrast suggests that query rewriting is effective not only
by changing meaning but also by disrupting structural patterns
used in SEO. Even minor edits can interfere with keyword match-
ing while preserving the original intent, highlighting the role of
rewriting in mitigating SEO attacks.

Table 12: The Retrieval Success Rate at Different
Semantic (STD) and Syntactic (ED) Changes

ED\STD (0.0,0.1] (0.1,0.2] (0.2,0.5] (0.5,1.0] Total

(0.0,0.1] 10.26% 0.00% - - 9.52%
(0.1,0.2] 10.34% 0.00% 0.00% - 9.55%
(0.2,0.5] 1.49% 1.91% 2.01% - 1.64%
(0.5,1.0] 0.57% 0.71% 0.33% 0.00% 0.48%

Total 2.46% 1.08% 0.57% 0.00% 1.46%

1) STD: semantic textual distance, measured as (1 − cosine similarity)/2;
2) ED: edit distance, measured as 1 − Levenshtein Ratio.
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D Domain-Restricted Query
Prompt Example for Domain-Restricted Query

Search strictly within site:{domain} for {product}, then recom-
mend only results from this domain. Give me your answer
and references.

E Ethical Considerations
This study is conducted under rigorous ethical oversight, and ad-
heres to strict ethical guidelines to ensure responsible research
practices.

(1) Controlled Experimentation. All experiments were conducted
in controlled environments to avoid real-world disruption. As de-
tailed in Section 4.1, we used existing SEO websites to build the
dataset instead of generating new ones, preventing large-scale in-
terference with real ecosystems (e.g. Google). The LLMSEO attacks
were implemented in simplified form and within a restricted scope,
using controlled subdomains to avoid contaminating legitimate do-
mains. All test sites were clearly marked with “For Testing Purposes
Only” disclaimers and taken down after experiments to eliminate
residual impact. For LLMSEs with limited search functions, such as
ChatGPT and Gemini, we avoided further jailbreak attempts.

(2) Open Data. No sensitive or private data was accessed in any
experiment. For closed-source LLMSEs, we strictly followed offi-
cial API policies and interacted through default interfaces. Open-
source LLMSEs were deployed on isolated LAN servers using offi-
cially obtained API keys. For SEO crawling, only publicly available

Google Search results were requested, and Google-documented
user agents [21] were used to simulate crawler behavior.

(3) Responsible Disclosure.We adhered to the responsible disclo-
sure. First, we reported to Google all 1,602 black-hat SEO websites
identified in Section 4.1 to facilitate timely remediation. Second, for
the nine evaluated LLMSEs, we have contacted or are contacting
both commercial and open-source providers through their official
vulnerability disclosure channels (e.g., OpenAI’s Bug Bounty) with
detailed reports describing the vulnerabilities, reproduction steps,
and suggested mitigation. For open-source systems, disclosures
were or will be submitted via email to developers. Third, for our
temporary experimental blogs, removal requests were filed with
Google and Bing to ensure de-indexing after experiment termina-
tion. These actions collectively demonstrate our commitment to
responsibly exposing risks while assisting vendors in strengthening
system resilience.

(4) Researcher Care. We ensured the well-being of all researchers
by providing methodological guidance and psychological support.
Given the potentially disturbing nature of illegal or harmful website
content, annotators worked in a controlled and supportive envi-
ronment with flexible schedules to prevent fatigue. Regular mental
health check-ins and access to counseling resources were main-
tained, and no participants reported psychological harm or undue
stress during the study.
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