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Abstract—With the growth of mobile computing techniques,
mobile gambling scams have seen a rampant increase in the
recent past. In mobile gambling scams, miscreants deliver scam-
ming messages via mobile instant messaging, host scam gambling
platforms on mobile apps, and adopt mobile payment channels.
To date, there is little quantitative knowledge about how this
trending cybercrime operates, despite causing daily fraud losses
estimated at more than $522,262 USD.

This paper presents the first empirical study based on ground-
truth data of mobile gambling scams, associated with 1,461
scam incident reports and 1,487 gambling scam apps, spanning
from January 1, 2020 to December 31, 2020. The qualitative
and quantitative analysis of this ground-truth data allows us
to characterize the operational pipeline and full fraud kill
chain of mobile gambling scams. In particular, we study the
social engineering tricks used by scammers and reveal their
effectiveness. Our work provides a systematic analysis of 1,068
confirmed Android and 419 iOS scam apps, including their
development frameworks, declared permissions, compatibility,
and backend network infrastructure. Perhaps surprisingly, our
study unveils that public online app generators have been abused
to develop gambling scam apps. Our analysis reveals several
payment channels (ab)used by gambling scam app and uncovers a
new type of money mule-based payment channel with the average
daily gambling deposit of $400,000 USD. Our findings enable a
better understanding of the mobile gambling scam ecosystem,
and suggest potential avenues to disrupt these scam activities.

I. INTRODUCTION

Gambling scams are a prevalent form of online fraud in
which a scammer claims to offer an advantage in gambling
activities (e.g., casino, poker, sports betting) to trick players
out of money. Gambling scams have already caused huge
financial losses to individuals and businesses. As reported
in [1], the Canadian Lottery scam netted more than $5 billion
from U.S. victims and was making around £500,000 a month
in the U.K. In China, online gambling scams are with the
highest per-capita financial loss among all kinds of scams [2].

With the fast growth and popularity of mobile markets
today, gambling scams are extending their reach to mobile
computing. In mobile gambling scams, miscreants deliver
scamming messages via instant messaging (IM) and host
scam gambling platforms on mobile apps. Those apps prevent
victims from cashing out their winnings [3]. Compared with
web-based scams recently studied [4], [5], [6], [7], mobile
gambling scams are characterized by using mobile-side so-
cial engineering attacks (e.g., scamming messages via instant
messaging apps) to distribute gambling scam apps, taking
advantage of mobile payment channels, and utilizing mobile
computing techniques to bypass traditional web-based fraud
detection [8], [9], [10]. Prior works on web-based scams

mainly focus on detecting scam gateway sites [5], identifying
the scam campaigns [4], or scam websites’ lifetime [7]. A key
limitation of these works was that they were based on external
measurements with limited visibility into the kill chain of
gambling scams, e.g., how does a scammer launch social
engineering attacks to lure victims; what is the modus operandi
of the scam platform; and what is the financial profitability
of such scam. So far, little has been done to analyze such
mobile scam apps, not to mention any effort to understand the
underground ecosystem behind them.

This paper presents the first systematic study of mobile
gambling scams based on a ground-truth dataset. The data
pertains to 1,461 scam incident reports associated with 1,068
Android apps and 419 iOS apps, spanning from January 1,
2020 to December 31, 2020, provided by an Anonymous
Authority. Given the ground-truth data, we conduct a quali-
tative analysis of the incident reports and develop a suite of
measurement and dedicated reverse-engineering tools which
enable us to perform a large-scale study to unearth a mobile-
based kill chain of gambling scams. More specifically, we aim
to answer the following questions: What social engineering
techniques are used by miscreants in mobile gambling scams?
How do they operate gambling scam apps? How do they
provide evasive payment channels under rigorous financial
censorship?

Looking into the ecosystem of mobile gambling scams, we
are surprised to find that this new threat is trending with a
great impact on today’s mobile ecosystem. More specifically,
through a qualitative analysis on these scam incident reports,
we study social engineering techniques used by scammers to
trick victims into participating in gambling scams. We observe
that scammers established connections with victims via mobile
apps including IM applications (55.4%) and social network
apps (28.1%), such as online Q&A, job hunting, or dating
apps, and faked their profiles based on the information of
the victim’s social networks. Interestingly, we observed that
victims are proactively requesting scam gambling apps after
being baited. Compared with cases where scammers persuade
victims to download scam apps, this yields significantly higher
scam losses ($47K vs. $30K on average per case). Through
the investigation of 1,487 gambling scam apps, we observed
two public online app generators, i.e., DCloud and APICloud,
being abused to develop scam apps. During gambling scam
app development, the certificates provided by these app gen-
erators have been used to sign 137 scam apps. Importantly,
we discover that gambling scam apps tend to declare lower
requirements for minimum OS versions being supported (4.4



for Android gambling scam apps vs. 5.0 for reputable apps
in Google Play, see Section VI-D) to ensure compatibility
between versions and, thus, can cover more victims, even
though their develop SDK versions are not outdated.

Furthermore, we analyze the payment channels employed by
mobile scam apps and discover eight payment channels used
by scammers, including traditional bank payment channels
(e.g., direct debits), online payment services (e.g., Alipay and
WeChat Pay), cryptocurrency (e.g., Tether and CGPay) and
money mule-based payments (e.g., Alipay and Idlefish). We
also bring to light about new techniques for anonymous trans-
actions, i.e., Idlefish Money Mule. To support this payment
channel, scammers recruit money mules, who are sellers of
a flea market app called the Idlefish, to transfer gambling
deposits. Our study uncovers 110 Idlefish stores involved in
money laundering, which we have reported to the platform.
Our study further investigates the revenue under this payment
channel by traversing 17,144 payment links, which show that
the average daily revenue is up to $400,000 USD. We reported
our findings to the affected parties, including Apple, HUAWEI,
Xiaomi, Getui, DCloud and Idlefish, who are serious about
these risks. Some of them expressed gratitude for our help via
bounty programs.
Contributions. We summarize the contributions as follows:
• We conduct the first in-depth empirical study of mobile

gambling scams based on ground-truth data. Our study inves-
tigates the kill chain of mobile gambling scams and the actors
involved.
• We reveal social engineering techniques used by miscre-

ants via a qualitative analysis on 1,461 mobile gambling scam
incident reports.
• We characterize both Android and iOS gambling scam

apps, including their development frameworks, declared per-
missions, compatibility, and backend network infrastructure.
Our study reveals that public online app generators have been
abused to develop gambling scam apps.
• We study the payment channels (ab)used by gambling

scam app. We also uncover a new type of money mule-based
payment channel and measure its revenue.

II. BACKGROUND

As mentioned earlier, a gambling scam is a type of cy-
bercrime fraud that tricks victims out of money in gambling
activities, such as poker, casinos, and sports betting. Compared
to traditional gambling scams, which simply build impossible-
to-win systems, modern gambling scam activities tend to
prevent victims from cashing out. For example, when the
victims want to cash out their winnings, they may be told
that their accounts are frozen or ridiculously over-charged [3].
Note that in our study, we focus on gambling scam activities.
The legitimacy of gambling is out of the scope of this study.

Moving from the Internet to mobile devices [11], today,
gambling scams increasingly happen through mobile apps
deployed to victims’ smartphones than victims browsing web-
sites. Here, we introduce a typical mobile gambling scam

Scammer

Victim

Scam App

LOCKED

Hello, I’m a software engineer.

I discovered a vulnerability of a 
gambling app. I can make you rich!

It sounds great! 
Let me try…

Victim

Why is my account locked?

How can I get my money back?
Victim

Scammer
Want to win more? Deposit more!

OK. I will deposit 
more now!

➊

❷

➌

➍

➎

Figure 1. The operational pipeline of mobile gambling scam.
Table I

THE BREAKDOWN OF THE GROUND-TRUTH DATASET.

Type #

Scam Incident Reports 1,461
Android Gambling Scam Apps 1,068
iOS Gambling Scam Apps 419

example from a real-world scam incident report, provided
by Anonymous Authority, to show how such scam activities
operate and how each entity interacts with each other.

Figure 1 illustrates the operational pipeline of mobile
gambling scams, which consists of four stages: connection
establishment, app delivery, gambling deposit, and scamming.
First, a scammer bootstraps the attack by establishing the
connection with a victim (Ê). To build and earn trust, a
scammer usually creates a fake profile and contacts the targets
through popular social media apps, e.g., dating apps or job
hunting apps. The scammer then usually lures the victim
to download a scam gambling app (Ë) by offering a “too-
good-to-be-true” bonus, which can exploit a vulnerability of
a gambling app to earn money. Once the victim trusts the
scammer and downloads the mobile gambling scam app, he
will fund his account (Ì) to start gambling via multiple
types of payment channels (e.g., bank, third-party payment,
cryptocurrency, money mule) embedded in the gambling apps.
Meanwhile, the scammer will bait the victim to continually
deposit money (Í) by offering more lucrative returns. The
scammer then will lock the victim’s account (Î), preventing
the victim from withdrawing his/her gambling income. In this
study, we focus on cases where gambling scam activities are
operated on mobile apps. To the best of our knowledge, it is
the first study of this kind.

III. GROUNDTRUTH DATA

We have collaborated closely with Anonymous Authority
throughout this research effort. During this time, we obtained
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a comprehensive and detailed dataset of 1,461 scam incident
reports, 1,068 gambling scam Android apps and 419 iOS apps,
spanning from January 1, 2020, to December 31, 2020. Note
that, in this dataset, either scam victims lived in China, or
scam activities happened in China. We summarize the high-
level statistics of our dataset in Table I. Among them, 456 scam
apps have been taken down, while others remain active at the
time of submission due to investigative interest by Anonymous
Authority.

For each online gambling scam app we investigate, we have
some or all of the following information, which we analyze
in more detail in Section V and VI, as elaborated below.
• Scam app samples. This dataset consists of 1,487 online
gambling scam app samples (1,068 Android samples and 419
iOS samples). The file size of samples ranges from 23 KB
to 93.9MB. The smallest one only contains five Java classes
and implements most of its functions via WebView [12].
Meanwhile, the largest one consists of multiple SDKs (e.g.,
push service SDK, third-party payment SDK) to support
various functionalities. As an instance, we observe that one
scam app integrates a live show SDK for gambling activity
live streaming to lure victims.
• Scam incident reports. The scam incident reports consist
of detailed information of the mobile gambling scam incident
from victims, including the time of the incident, amount of
loss, and incident summary (including how scammers establish
a connection with victims, how scammers build and earn the
trust of victims, and how scammers deliver scam apps to
victims, etc.). The length of incident summaries ranges from
171 words to 1,931 words, with an average of 606.66 words
and an standard deviation of 190.36 words.

IV. ETHICS

Our data is similar to that used in prior cybercrime stud-
ies [13], [14], [15]. It originates from law enforcement proce-
dures to seize and record scam activities. Employing such data
might raise ethical issues. Therefore, we carefully manage our
research activities to ensure they stay within legal and ethical
boundaries.

This research has been approved by our institution’s IRB.
The approval process is similar to the exempt review in the
U.S. because this study is considered as “minimal risk” when
we consulted with the IRB staffs. Note that our research only
uses the previously collected data (collected by collaborated
Anonymous Authority), and any possible Personal Identifiable
Information (PII) in scam incident reports was removed before
the reports were shared with us.

Apart from acquiring the approval of our institutions, we
also comply with the principles identified in the Menlo
Report [16]. More specifically, to evaluate “balancing the
risks and benefits” based on the Menlo Report, we carefully
designed our experiment and ensured that our research did not
contribute any financial profits to the criminal. For example,
our deposit testing (Section VII) neither sent any money to
benefit the criminals nor attempted to communicate with scam-
mers. In our research, we repeatedly placed deposit requests

and then withdrew those requests after collecting transaction
information (e.g., cryptocurrency addresses). Over the course
of this paper, we did not interact with either the victims or the
scammers.

In addition, this research aims to profile mobile gambling
scam activities to the research community, enable law en-
forcement and policymakers to better understand and provide
insight into these new types of scam activities. We are sure that
the benefits to the general public far exceed any knowledge
that the criminals might obtain from the high-level details
presented in our paper.

V. ANALYSIS OF SOCIAL ENGINEERING TRICKS

To investigate social engineering attacks [17] used in mobile
gambling scams, we conduct a qualitative study of scam
incident reports. Each report is associated with an independent
victim. 1 Their ages range from 14 to 79 (2.1% of ≤20, 70.6%
of 21-40, 22.9% of 41-56, 4.4% of ≥57), and their education
levels vary from elementary school to doctoral degree (2.8%
of elementary school, 21.5% of middle school, 23.3% of high
school, 52.4% of college). In particular, this study seeks to
answer the following research questions:

RQ1 How does a scammer establish connections with a
victim to build trust?

RQ2 How does a scammer deliver a scam app to a victim?

RQ3 How does a scammer lure victims to deposit money
continually?

RQ4 What is the logic of mobile gambling scams?

A. Data Coding

We used the qualitative open-coding technique [18] on 1,461
scam incident reports to study the aforementioned questions.
Specifically, two cybersecurity professionals independently
reviewed a random set of 75 incident reports (about 5% of
the total) and resolved inconsistencies while generating initial
codebooks. They then independently coded the remaining
1,311 reports and compared their coded results by Krippen-
dorff’s alpha coefficient, a widely used statistical measure of
the agreement achieved when coding a set of units of analysis.
Krippendorff’s alpha of this study is 0.85, higher than the
reliability threshold in social science [19]. Afterwards, they
resolved all disagreements in coding phrases for each incident
to generate the final codes. The ultimate codebook developed
provides labels for the footprints of a scammer exploiting
human psychology to establish a connection, deliver an app,
and lure a victim to deposit money continually. Table II shows
the codebook. In total, it took two human laborers around
two weeks to complete the procedure. It is worth noting that
the coding book has a limited coverage due to the vantage
point of our study. Some incident reports do not mention the
corresponding social engineering tricks.

1We use incident report IDs to refer to anonymized victims.
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Table II
NUMBER OF INCIDENT REPORTS FOR EACH SOCIAL ENGINEERING TRICKS.

Type Sub-type Method # (%) Our Work Previous Works

Connection Establishment Role Play Professional (e.g., gambling tutor) 331 (22.7) 4 [20], [6]
Intimate relationship (e.g., boy/girl friend) 204 (14.0) 4 [21], [22], [9]
Authority (e.g., law enforcement officers) 10 (0.7) 4 [20], [23]
Others (e.g., customers, cyber pals) 22 (1.5) 4 −

Total - 567 (38.9)*

App Delivery Scammer Driven Invite victims to participate gambling 748 (51.2) 4 −
Ask victims to gamble as agents 81 (5.5) 4 −

Victim Driven Share winning experience in a chat channel 457 (31.3) 4 −
Show off profit gains on social media 145 (9.9) 4 −

Total - 1431 (97.9)*

Deposits Incentive Require victims winning reach a threshold to payout 405 (27.7) 4 −
Require additional margin to payout 131 (9.0) 4 −
Pay tax before payout 55 (3.8) 4 [24]
Require deposit reach a threshold to get bonus 55 (3.8) 4 [24]

Pressure Freeze victims’ account 64 (4.4) 4 [24]
Blame victims for operating illegally 60 (4.1) 4
Blame victims for providing invalid bank card 36 (2.5) 4 −

Total - 806 (55.2)*

Scamming Logic Disable App Functionality Victims cannot withdraw balance 1154 (79.0) 4 −
Victims cannot login apps 246 (16.8) 4 −

Modify Account Balance wiped out 22 (1.5) 4 −

Total − 1422 (97.3)*

* The percentage of Total is less than 100% since some incident reports do not mention corresponding social engineering tricks.

Table III
VICTIM RECRUITMENT CHANNEL.

Category Sub-Category # (%)

Traditional Telephone 136 (9.3)
SMS 13 (0.9)
Email 2 (0.1)

Total 151 (10.3)

Instant Message Wechat 682 (46.7)
QQ 120 (8.2)
Others (e.g., WhatsApp) 8 (0.5)

Total 810 (55.4)

Online Social Network Dating 253 (17.3)
Short-video sharing 80 (5.5)
Online Q&A 21 (1.4)
Local forum 16 (1.1)
Job hunting 13 (0.9)
Others 28 (1.9)

Total 411 (28.1)

No Mention - 89 (6.1)

Total - 1461 (100.0)

B. Connection Establishment

Firstly, we analyze how a scammer bootstraps the attack by
establishing a connection with the victim, coded as Connection
Establishment, as shown in Table II. We code a strategy
as Role Play when a scammer plays a role to establish a
connection and build trust. For instance, ID-1380 described
how a scammer built a connection with him:

“ I published the house renting information on a local
information sharing forum, and then a man contacted me
to ask if the house was rented out. I replied that the house

had not been rented. After that, he told me his business
focused on furniture trading and frequently chatted with
me. I put down my guard gradually. Until someday, he
recommended me a gambling app... ”

Further, the roles played by scammers are organized into
three main methods based on our codebook: Professional,
Intimate relationship and Authority. When coding as Profes-
sional (22.7%), scammers act as the technical staff or gam-
bling tutor who can hack into the gambling system or master
gambling secrets to help victims profit. The code of Intimate
relationship (14.0%) describes that scammers establish roman-
tic or close relationships with victims (e.g., boy/girl friend) to
build trust. Apart from that, the code Authority (0.7%) means
that the scammer chooses a role with a higher social status and
prestige, e.g., law enforcement officers, to contact victims.

As shown in Table III, in our study, we observe that
scammers seek victims on online social networks (OSN), such
as online Q&A, short-video sharing, job-hunting, and dating
platforms, and then set up role play based on the information
a victim left on the OSN. This approach is different from
traditional scams [25], [26], which usually make telephone
calls or send emails to establish connections. Scammers also
tend to set up role-play with higher social statuses, profes-
sional techniques, or intimate relationships when establishing
connections with victims. For instance, ID-627 trusted the
scammer because the scammer showed his “professional” in
information technology:

“ He (the scammer) is the leader of a software company.
One day, he told me that the system of XX[anonymized]
has a vulnerability, and he was leading a technical team
to solve that issue. Two days later, he said that while fixing
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the issue, he found a vulnerability of a gambling app that
can be exploited to earn money... ”

We also observe many cases (14.0%) where scammers strike
up a relationship with victims to build their trust before
delivering gambling apps. For example, as ID-844 described:

“ I happily chatted with him (the scammer), and soon he
became my boyfriend. He informed me that there was a
quick way to make money in mid-May... ”

Finding I: Scammers tend to palm themselves off as hold-
ing roles with high social statuses, professional techniques,
or intimate relationships when establishing connections
with victims.

Finding II: Scammers prefer to seek victims and establish
connections via online social networks (OSN) (e.g., online
Q&A, job-hunting).

C. App Delivery

A critical step in gambling scam activities is delivering apps
to victims. To achieve this goal, scammers leverage several
psychological strategies, as shown in Table II. We code a
strategy as Scammer Driven (56.7%) when scammers persuade
the victims to download gambling apps. The code of Victim
Driven (41.2%) means that a victim proactively requests a
gambling app after being baited, e.g., scammers continuously
discuss and show gambling profit gains in group channels or
posting their gambling income on social media. As an instance,
ID-192 said:

“ He (the scammer) invited me into a group channel. In
that channel, I observed how the gambling tutor taught us
gambling, how group members bet and won. They claimed
they all made a successful payout. Afterward, the scammer
said that winning in a new lottery app is very easy. I
witnessed that the group members expressed their intention
to participate. So I could not wait anymore and proactively
contacted the scammer to download the gambling scam
app. ”

Interestingly, when comparing the scam losses between the
cases coded as Scammer Driven and Victim Driven, we found
that scam losses of Victim Driven are significantly higher than
Scammer Driven, with the average scam losses of Scammer
Driven of $30,648.8 (the median of $11,938.0) and the average
of Victim Driven of $47,302.7 (the median of $20,045.9). This
difference indicates that social engineering tricks, which lure
victims to request scam gambling apps proactively, are more
effective at tricking victims out of money.

Finding III: Social engineering tricks, which lure victims
to request scam gambling apps proactively, are more
effective to trick victims out of money.

D. Deposits

After delivering scam gambling apps, scammers start to en-
force victims to deposit money continually (coded as Enforce
Deposit, as shown in Table II). This step can be categorized
into two sub-types based on our codebook: the “Incentive” and
the “Pressure”. In “Incentive” strategy (44.2%), a scammer
will show incentives for continually depositing money, such

as winning bonuses. Meanwhile, 11.0% of scammers put
psychological pressure on the victims if they do not make
deposits, coded as “Pressure” strategy. For instance, ID-544
depicted that s/he was blamed for providing an incorrect
payback bank card number:

“ ...the customer service said that my bank card number
was incorrect...Only with one more deposit could I change
the card number. ”

Although scammers prefer to use incentives to lure vic-
tims (44.2% vs. 11.0%), we found that these two strategies
pose similar success rates. Here, we define the success rate
as the number of victims who made deposits following social
engineering tricks (instead of cheat awareness) over the total
cases with the code of the “Incentive” or the “Pressure”. We
observe that these two strategies have similar success rates:
almost half of the victims were encouraged to make deposits
through social engineering tricks. For “Incentive” strategy,
its success rate is 47.1%. The “Pressure” strategy features a
48.1% success rate.

Finding IV: To ensure victims make deposits, scammers
tend to leverage incentive strategies instead of imposing
psychological pressures, even though similar success rates
are achieved with either strategy.

E. Scamming Logic

All incident reports in our study are associated with the
cash out scam, i.e., scammers prevent victims from cashing out
gambling incomes. As shown in Table II, we categorize their
scamming logic into two sub-types: Disable App Functionality
and Modify Account. Most scammers deploy their scamming
logic by disabling scam apps’ functionalities, which means
that victims’ accounts are frozen, or the cash out function
is disabled. Meanwhile, 22 scammers directly wiped out the
victims’ balance, which was coded as Modify Account.

In some cases, we observe scammers make up excuses to
delay being aware. The ID-138 expressed his experience:

“ ... On someday, the gambling tutor sent me a message:
‘the company’s manager has been arrested for illegally
opening an enterprise account, and his communication
account has been taken down. Please do not contact the
manager or tutor in the short term. Your gambling account
balance will be refunded in one month. Don’t contact us,
or you will be at your own risk.’ As a result, at the end of
the month, I found that I didn’t receive any payout, and
couldn’t open the gambling app either. Only then did I
realize that I was cheated and turned to the police. ”

Finding V: Unlike traditional online gambling frauds,
which trick victims by charging additional fees or selling
bet cheating software, the scamming logic of the online
gambling scams in our study is mainly to disable scam
apps’ functionalities.

F. Discussion

Some of the social engineering tricks used to establish
connections have also been discussed in other fraud research,
e.g., connect victims as an authority or intimate in the “419
scams” [20] and the online dating fraud [21], as shown in
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Table II. In our research, we present the first systematic study
based on a unique and valuable scam incident report dataset,
which are associated with a larger size of victims and a longer
time-span, compared with previous work. Our study reports
that mobile gambling scammers contact victims for more
diverse reasons (e.g., house renting and job hunting) through
various approaches (e.g., Local forums or Online Q&A plat-
forms). In addition, for the first time, our research revealed the
social engineering tricks used to deliver scam gambling apps,
enforce deposits, and show scamming logic. Note that some
high-level psychological tricks, such as showing incentive or
pressure, have been mentioned in previous fraud research [22],
[23], but those studies did not focus on gambling-specific
tricks.

VI. GAMBLING SCAM APP ANALYSIS

In this section, we study app behaviors of scam gambling
apps, including their development frameworks, permissions,
the compatibility, and the network infrastructure.
Genuine gambling apps. We collect a set of genuine gam-
bling apps for behavior comparison. The genuine gambling
apps refer to the reputable and legitimate gambling apps.
Specifically, we first fetch popular gambling websites from
SimilarWeb [27], then filter top-ranked gambling websites
based on Tranco Top-1M Ranking List [28]. Afterwards, we
validate these websites and associate apps through certificates
(e.g., removing any certificate with nonsense string) and
VirusTotal labels. To further validate the legitimacy of apps,
we also check whether the app is published on Google Play
or App Store. We confirm 156 websites and download apps
associated with these sites. Finally, we successfully collected
182 genuine Android gambling apps and 134 genuine iOS
gambling apps through the above methods.

A. Public and Non-public Apps

We identify how many of the scam apps in our study are
available to the public. This analysis took place on January 4,
2021, and we used all 1,487 scam apps for app matching. First,
as for iOS apps, we extract each scam app’s name and unique
bundle identifier by inspecting the CFBundleDisplayName
and CFBundleIdentifier filed in the Info.plist file. Then,
we search app names through utilizing the iTunes Search
API [29]. For each app in the search results, we extract the
bundleId from its meta-information for app matching. Our
result shows that none of the iOS scam apps in our dataset
are indexed in the App Store.

As for Android apps, we first leverage Androguard [30] to
extract the package name from each APK file in our dataset.
We then use the package name for app searching in Google
Play [31], Androzoo [32], and other third-party app markets,
such as MyApp [33], Xiaomi App Store [34], iuuu9 [35],
and anxz [36]. After retrieving apps in the search result, we
use apktool [37] to find the signing key of each app for
app matching. However, none of the package names matched
successfully in Google Play, Androzoo, MyApp, or Xiaomi
App Store; only five scam apps with package name exactly

Table IV
EXAMPLES OF APP DEVELOPMENT FRAMEWORKS FINGERPRINTS.

Framework Namespace / Header File

React Native Android com.facebook.react.* assets/index.android.bundle
iOS ReactNativeHelper.h main.jsbundle

DCloud Android io.dcloud.* io/dcloud/all.js
iOS - PandoraApi.bundle/all.js

Cocos2dx Android org.cocos2dx.* lib/*/libcocos2djs.so
iOS cocos2d.h -

Unity3D Android com.unity3d.player.* lib/*/libunity.so
iOS UnityFramework.h */mscorlib.dll-resources.dat

Cordova Android org.apache.cordova.* assets/www/cordova.js
iOS CDV.h www/cordova.js

APICloud Android com.uzmap.pkg.* assets/uzmap/module.json
iOS UZModule.h uz/module.json

the same were found in iuuu9 and anxz. Interestingly, those
apps were updated with innocent-looking app descriptions
and screenshots. When launching those apps, users will be
redirected to a scam gateway to download scam apps.

Apps sideloading. We find that none of the gambling scam
apps in our dataset reside in reputable App markets. However,
sideloading apps on Android and iOS requires configuration
changes in the respective system settings. We try our best to
figure out how typical, non-technical victims manage to carry
out a series of actions to sideload apps. On the one hand, by
visiting scam app download links recorded in the reports, we
learned that scammers typically provide step-by-step tutorials
for sideloading apps on app download pages. Victims only
need about 4-5 clicks to sideload an app following these tuto-
rials. An example of the tutorial can be found in Appendix A.
On the other hand, although the incident reports do not provide
the details about whether or how scammers instruct victims to
sideload scam apps, the Anonymous Authority has confirmed
that some scammers did provide detailed technical support for
doing so.

Note that scam apps leverage the Apple Developer En-
terprise Program, originally designed to create and distribute
proprietary enterprise iOS apps for internal uses, to distribute
gambling scam apps on iOS [38], [39]. In this way, there
is no need for victims to have a jailbroken phone to install
iOS scam apps. We have reported our findings to the owners
of those enterprise certificates, but we have not received any
response yet. In addition, we had already reported these abused
enterprise certificates to Apple, and they acknowledged our
report.

Finding VI: None of the gambling scam apps in our
dataset can be found through reputable App markets.
Instead, scammers usually launch attacks with the side-
loaded app through step-by-step instructions and technical
support.

B. Development Framework Identification

In our study, we investigate the development framework
used by scammers for generating scam apps. To fingerprint
the development frameworks of scam apps, we first determine
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Table V
APP DEVELOPMENT FRAMEWORKS.

Genuine Gambling Gambling Scam

Framework # Android App # iOS App # Android App # iOS App

React Native [40] 8 4 70 17
DCloud [41] 0 0 59 7
Cocos2dx [42] 19 11 9 0
Unity3D [43] 24 27 8 0
Cordova [44] 19 5 7 0
APICloud [45] 0 0 4 0
Others 12 8 4 1

35 popular mobile app development frameworks (e.g., React
Native, Cocos2dx, Cordova, see the full list in Table VII in
Appendix B) and then extract unique features from them, such
as namespace in Java and Kotlin, the Objective-C header file,
and the dynamic link library (.so), image, or script. Table IV
shows examples of fingerprints adopted in our study.

We identified eight development frameworks used by scam
apps. The results are listed in Table V. Interestingly, we
observe scammers abused public app generators (OAGs) [46],
i.e., DCloud and APICloud (Row 2 and Row 6 of Table V),
for the scam app generation. Particularly, 63 Android apps
and seven iOS apps in our study were generated by DCloud
and APICloud, which account for 4.7% of scam gambling
apps in our study. Note that this percentage is slightly lower
than that of OAG-generated unwanted apps as reported in
[47] (4.7% vs. 12.1% 2). Surprisingly, when investigating app
certificates of OAG-generated scam apps, we also found that
137 scam apps were signed by Digital Heaven, the company
of the DCloud framework. When generating apps, the DCloud
framework will automatically sign OAG-generated apps using
its own certificate. Even worse, DCloud’s certificate has been
abused by scammers to sign gambling scam apps. In our study,
we observe that 71 scam apps are signed by DCloud but not
generated by DCloud. We have reported this issue to DCloud.

Finding VII: Scammers abuse Online App Genera-
tor (OAG) to automatically generate scam apps, as well
as signing those apps.

Scam app clustering. As apps with similar file structures and
high code similarity suggest a high possibility of belonging
to the same gambling scam campaign [9], we conduct a
clustering analysis of gambling apps leveraging their file
structure similarity and code similarity. For file similarity,
given two APKs/IPAs, we calculate their Jaccard distance of
resource files. More specifically, we first calculate the SHA256
hash of each resource file, then combine the hash values into
a set for each APK/IPA. Afterwards, we compare two hash
sets regarding their Jaccard distance. For code similarity, we
calculate the similarity of dex files and so files, or executable
files and dylib files, respectively, on Android and iOS. Then,
we apply DBSCAN [48], a density-based cluster algorithm,
on the similarity matrix to cluster the apps. Note that iOS
certificates are generally abused, and thus, we do not utilize

2Here we divided the sum of OAG unwanted packages (rank 2, 5, 10 of
Table V = 40,693) by the sum of all unwanted packages (335,471) in [47] to
get this result.

this feature to cluster iOS scam apps. We only merge Android
gambling apps signed with the same developer signature, as
they belong to the same gambling scam campaign. Moreover,
if there are overlapping domains of apps’ backend servers
in any clusters, we also merge them as they share the same
infrastructure.

To this end, 1,068 Android gambling apps and 419 iOS
gambling apps were clustered into 134 and 11 groups, re-
spectively. Note that for Android apps, 49 groups have their
sizes larger than 1 while the number for iOS apps is six.
Table VIII and Table IX in Appendix C show the top-5 clusters
of Android and iOS gambling apps. We can find that most apps
in the same cluster share the same prefix of package names
and bundle IDs. For example, for the largest cluster of Android
and iOS gambling apps, more than 81.4% of the Android
apps and all iOS apps share the common package name prefix
com.yibo.*. In addition, 86.8% of Android gambling scam
apps in this cluster are issued by the same certificate with the
Distinct Name of yibo.

Finding VIII: The most popular scam app family of
Android and iOS (in our dataset) are Yibo, which consists
of 555 Android apps and 191 iOS apps, spreading over
733 backend domains.

C. Permission Analysis

Both Android and iOS implement permission models to
control apps’ access to sensitive data and system resources.
By default, apps are not allowed to perform any sensitive
operations without corresponding permissions. We investigate
the permissions declared and requested by scam apps.
Android scam apps. As for Android, we leverage the
get permissions() API of Androguard to extract and study
the usage of permissions by scam apps. In this way, we
successfully identify 636 unique permissions, including 119
AOSP–defined permissions and 517 custom permissions de-
fined by the app vendor or other third-party services from
Android scam apps. As for the custom permissions, we ob-
serve that 446 (86.3%) of them are used for push service,
such as “com.hgapp.bet365.permission.JPUSH MESSAGE”
for JPush SDK, which helps the scammers keep users’ “stick-
iness” by sending push messages, and 6.19% are permissions
used for reading or writing settings (e.g., create a shortcut on
home screen) defined by each vendor.

Especially, we pay attention to the usage of dangerous
Android permissions [49] since they are closely related to
user privacy. The scam apps request 4.6 dangerous AOSP
permissions on average, while some apps even declared
15 dangerous permissions including READ CONTACTS and
READ SMS. Figure 2 shows the distribution of dangerous
AOSP permissions requested across gambling scams and gen-
uine gambling apps. Unlike genuine gambling apps, scam apps
integrated Instant Messaging SDKs to construct built-in IM
channels, which provide a steady and uncensored communica-
tion approach to launch social engineering attacks on victims.
Therefore, they request the corresponding permissions, such as
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Figure 2. Dangerous permissions requested by Android scam apps and
genuine gambling apps.
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Figure 3. Permissions requested by iOS scam and genuine gambling apps.

RECORD AUDIO and READ CONTACTS, for this purpose.
On the contrary, genuine gambling apps rarely request these
permissions. As for GET ACCOUNTS, most genuine apps
request this permission for Google Mobile Services (GMS)
SDK integration, while most gambling scam apps do not
integrate such functionality.
iOS scam apps. As for iOS, to access users’ private data,
developers are required to include specific key-value pairs
in their app’s Info.plist file which indicates requesting per-
missions and corresponding purposes. To analyze permission
usage of iOS apps, we first unzip each .ipa file to extract the
Info.plist file in our dataset. We leverage plistlib [50] to parse
it and investigate the declared permission and purpose.

Altogether, we identify 419 iOS apps declaring 19 unique
permissions. The number of permissions declared varies from
0 to 17, with an average of 7.8 and a standard deviation of
5.9. Similar to Android scam apps, the most frequently used
permissions are reading and writing PhotoLibrary, Camera,
and Microphone. We also observe 138 (32.9%) apps declaring
the same 16 permissions, with the required description string
“APP requires your consent to access your microphone,
camera, etc.”. We find that such purpose strings are generally
used by online tutorials [51], and developers are expected to
replace them with their true purposes. However, it is obvious
that the scam apps neither decrease the claims of permissions
as needed nor state their intention of using these permissions.

Compared to gambling scam apps, we also find Android
and iOS genuine gambling apps request location permissions
more often than scam gambling apps, which may be because

Android Minimum SDK Version iOS Minimum OS Version
5

10

15

20

25

30

Scam
Genuine Gambling
Benign Set1
Benign Set2

Figure 4. Development SDK version distribution. Benign Set1 and Set2 refer
to apps in Google Play and MyApp for Android, App Store US and App
Store China for iOS, respectively. Gambling scam apps tend to declare lower
requirements for minimum OS versions being supported (4.4 for Android
gambling scam apps vs. 5.0 for reputable apps in Google Play).

legal gambling usually has regional restrictions. In addition,
we observe that the genuine gambling iOS apps usually request
permissions FaceIDUsage for Face ID login, which is rarely
used by scam gambling apps.

Finding IX: Compared with genuine gambling apps, gam-
bling scam app request more dangerous permissions to
support social engineering tricks (e.g., keep users’ “stick-
iness” via sending push messages or constructing built-in
IM channels).

D. Compatibility Analysis

To inspect the compatibility of scam apps, we analyze
the development SDK version of these apps. More specif-
ically, we identify the MinSdkVersion, which specifies
the minimum platform API level required for the app to
run, and the TargetSdkVersion, which designates the
platform API level that the app targets. As for Android apps,
we leverage Androguard to extract the minSdkVersion
and targetSdkVersion attributes from the AndroidMan-
ifest.xml file. Considering iOS apps, we first extract the
Info.plist file and then inspect the MinimumOSVersion and
DTPlatformVersion field from it, which are similar to
MinSdkVersion and TargetSdkVersion in Android.
To compare app compatibility between scam apps and genuine
apps, we additionally crawl the top-500 apps from Google
Play and a third-party App Store, MyApp [33], and the top-
200 free apps from Apple App Store in the U.S. and China on
December 10, 2020, to identify their MinSdkVersion and
TargetSdkVersion.

Figure 4 illustrates the comparison results for Android and
iOS apps. We find gambling scam apps tend to declare lower
requirements for minimum OS versions to ensure compat-
ibility across versions and, thus, can cover more victims,
even though their develop SDK versions are not outdated.
In particular, almost all scam apps declare their min SDK
version to be 19 (Android version 4.4) or lower, only 48.8%,
48.6%, and 67.8% for genuine gambling apps, reputable apps
in Google Play, and MyApp, respectively. What’s more, we
observe 80 scam apps that even support Android 4.0.4, which
was released in 2012, with target SDK 28 and 29 (Android 9
and 10). Similar findings can be observed in iOS apps: most
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iOS scam apps declare their minimum OS version to be 9.0,
which was released in 2015, while the mode of minimum OS
version of genuine gambling app is 11.0, which was released
in 2017. In addition, the median number of min SDK version
and target SDK version in genuine gambling apps are 21 and
29, respectively, which indicates the compatibility of genuine
gambling apps is consistent with benign apps but not with
gambling scam apps.

Finding X: Gambling scam apps tend to declare lower
requirements for minimum OS versions to ensure compat-
ibility across versions and, thus, can cover more victims,
even though their develop SDK versions are not outdated.

E. Network Infrastructure Analysis

Backend server identification. Identifying the backend in-
frastructure enables us to understand how mobile scam apps
operate. In particular, we (1) design and implement a static
analyzer to extract backend server URLs from scam apps
automatically and then (2) use mitmproxy [52] to profile their
network traffic. Our approach is elaborated on below.

Backend URL identification. We observe that scam apps
either leverage network APIs to fetch data from the backend
servers or use the WebView component to display the content
of specific domains. To extract backend URLs for Android
apps, we first collect a list of network request APIs and
WebView APIs, such as WebView.loadUrl(String url), from
official documents and previous works [53], [12], [54]. Then,
we use Androguard to traverse the target app and locate the
callers of these APIs.

After locating the position of API calls, we then perform
a backward taint analysis for the API’s parameter to find the
corresponding value of the URL. To be more specific, we first
build an inter-procedure control flow graph (ICFG) for the app
and mark the local variable of candidate parameters of the
called API WebView.loadUrl as taint source. We then perform
a backward taint analysis along the ICFG to collect all tainted
instructions and variables. Specifically, we forward traverse
these instructions to reconstruct the string-related operations
such as initialization and concatenation of StringBuilder and
StringBuffer. Furthermore, in the case of calling Android-
specific APIs, which read the string from asset files, we extract
corresponding resources files from the decoded APK file to
resolve the string value. Meanwhile, we also record extra
semantic information for follow-up filtering work. We extract
and save the field name of tainted fields, and, for the used
resource strings, we extract their string id and string name
from the /res/values/strings.xml file. In our study, we filter out

domains requested by third-party libraries. Particularly, we first
collect the top-10 SDKs in each category from AppBrain [55]
and the corresponding package namespace, then we filter out
the web requests initiated by SDKs rather than apps.

As for iOS apps, we use the keys obtained from Android
backend server analysis, locating whether they exist in iOS
static resource files (e.g., Info.plist). If they exist, we extract
the corresponding value as backend URL candidates. We also
extract the strings embedded in the Mach-O file and filter out
invalid URLs and domains by Python validators library [56].
Inspired by prior work [57], since iOS libraries and their
counterparts on Android will share common features, we also
filter out the domains used by third-party libraries, which were
collected in Android backend analysis.

Traffic profiling. We first write 403 lines of Python scripts to
automatically spawn an app in physical devices and capture its
traffic for 10 minutes. To reduce interference between different
apps, we uninstall the previous app before installing the new
one. To this end, we install and capture traffic of 1,068 Android
apps and 19 iOS apps and successfully collect 21.28 GB of
raw traffic log files in total. Note that some iOS apps failed
to install due to revoked enterprise certificates. To reduce
irrelevant traffic, we filter out the CDN static resources and
third-party service traffic through the list of CDN domain [58]
and third-party domains acquired from the previous step.

Given those traffic log files, we build the traffic flow
sequence by each request’s timestamp and map the target
host of requests to a number corresponding to the order they
first appear in the app’s traffic. Besides, inspired by related
works [59], [60], which show the first few seconds of a
packet sequence indicating the most useful features for website
fingerprint, we focus on the first few packages (in our study,
we set the threshold to be 100 packages) after the backend
server appeared in network traffic. By calculating the sequence
similarity (via Euclidean distance [61]) between each traffic,
we successfully group them into three clusters.

As shown in Figure 5, apart from directly fetching scam
content from backend servers, shown in Figure 5-a, we notice
that some apps will first connect to one or more intermediate
servers, and these servers will return with HTTP 200 or
302 (for redirection) status code. More concretely, if scam
apps receive responses with encrypted backend servers, they
will decrypt them first. As shown in Figure 5-b or Figure 5-c,
after interacting with the intermediate server(s), apps will fetch
scam content from the actual backend server.

Limitation. Our backend URL identification is implemented
by a static analysis approach, which cannot cover the code
loaded dynamically in nature. Besides, the native .so file was
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Figure 6. Typical backend network architecture.

not covered in our implementation. In taint analysis, we use the
APIs collected from related work and documents as our source.
Even though we try our best to complete this list, the scammers
may choose rarely used API to bypass this identification. In
traffic profiling, we install our proxy certificate both in iOS
and Android systems to capture SSL traffic. Even though this
approach could cover common cases, we could not guarantee
that all gambling scam apps are implemented without SSL
pinning.

We filter out the CDN and the third-party libraries based
on the existing CDN domain list and the top-10 SDK list
from AppBrain; it may lead to false positives if the scammer
uses a CDN or SDK not in the list. In addition, different
from applying the static taint analysis in Android, we use
strings util, which may lead to some false negatives due to
the lack of modelling string operation such as initialization
and concatenation.

Infrastructure profiling. Through the aforementioned ap-
proach, we collect 1,161 backend URLs associated with 1,277
scam apps. When analyzing their network infrastructure, be-
sides the traditional infrastructure as illustrated in Figure 6-a,
we observe 223 scam apps leveraging servers to update
backend servers dynamically, and we named them distributor.
To avoid being taken down, scammers use distributors to
dynamically deliver domains of backend servers while back-
end servers provide core gambling services, such as account
management, betting, and drawing, as shown in Figure 6-b
and Figure 6-c.

According to our observation, a gambling scam app imme-
diately communicates with a distributor after initialization, and
the payload between the distributor and the client is relatively
small. After the app loads the address of the backend server,
it launches diverse gambling functions with much higher
traffic volume. Thus, we differentiate distributors and backend
servers with their activation order and network traffic volume.

After diving into these apps’ distributor and backend do-
mains’ life cycle, we find more than 55.1% of backend servers
were registered less than two years ago — and 12.2% less than
one month — while the distributor domains were registered
five years ago. The details of top distributors by lifetime
can be found in Table XI in Appendix D. This difference

may imply that the distributor is much more stable than the
backend domain. More interestingly, as shown in Figure 6-c,
apart from using dynamic backend server fetching, we observe
that 108 scam apps leverage distributor pools to fetch their
backend domains. If any of the distributors in the pool are
available, scam apps can communicate with their backend
servers successfully. We find that this infrastructure design
makes scam content delivery more evasive, i.e., the scammer
can easily migrate the backend service from one domain to
another without distributing new scam apps.

Besides, we cluster the backend servers based on extracted
domains. Then, we use passive DNS to query the IP address
of each backend server. To further study the cloud services
behind it, we use the ip2location dataset [62] to query the AS
corresponding to each IP address. Table XII shows the popular
ASes and the number of IP addresses of each AS. Although the
backend services are distributed on 102 different ASes, most
are concentrated on a few cloud services. For example, the top-
five cloud services provide services that were used by 79.5% of
the gambling scam backends. Most cloud services are located
in or around China, which is aligned with the regional nature
of the scam targets.

Finding XI: Gambling scam apps leverage distribu-
tors (even distributor pools) to distribute backend servers,
which significantly improves scam apps’ robustness.

VII. PAYMENT CHANNELS

Next, we analyze the various payment channels of mobile
scam apps to understand their gambling deposit operations and
estimate the revenue of online gambling scam activities. Since
scam apps usually embed with multiple-factor authentication
methods (e.g., CAPTCHA and referral code) before displaying
payment details, it is challenging to automatically extract
payment channels on a large-scale.

In our study, we manually investigate 100 scam apps 3

to determine their payment channels. More specifically, we
install these apps on our five physical devices and manually
investigate the payment channels. Considering gambling scam
apps may hide malicious/improper behaviors or payment chan-
nels when detected in abnormal running environments, e.g.,
virtual machines, we conduct this study on physical devices.
Particularly, once we identify a payment channel, we place an
initial test deposit to determine the authenticity. If genuine, we
determine whether we should repeatedly perform deposits and
if this payment channel is associated with dynamic recipients.
It is worth noting that our deposit testing neither sent money
to benefit the criminals nor attempted to communicate with
the scammers. In our research, we only repeatedly place
deposit requests and then withdraw those requests after col-
lecting transaction information (e.g., cryptocurrency address).
For those payment channels with dynamic recipients, we
conducted repeated deposits on a five-minute basis beginning

319 of the evaluated apps are iOS, which are in the same set of the iOS
apps in Section VI.E. Similarly, the rest of 81 Android apps are randomly
selected from the runnable Android apps.
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Table VI
THE DISTRIBUTION OF PAYMENT CHANNELS.

Category Sub Category #

Bank Transfer Direct Debit 84

Online Payment
Alipay 25

WeChat Pay 14
UnionPay 8

Cryptocurrency
Tether-ERC20 9
Tether-TRC20 10

CGPay 15

Money Mule Based Payment Alipay 29
Idlefish 5

Total 100

from 14:00 to 14:30 on December 17, 2020. We placed 120
deposit requests in total related to 101 different recipients.
Through this method, we successfully registered accounts on
92 gambling scam apps. Eight apps required a mandatory
referral code, and we observed 197 different payment channels
accepted by those scam apps.
Overview. Table VI shows the number of scam apps as-
sociated with each payment channel. On average, each app
consists of 2.14 payment options. In addition to traditional
bank payment channels (e.g., direct debits) and online payment
services to fixed recipients (e.g., WeChat Pay and Alipay,
which is similar to Paypal; It allows users to send and receive
money online through their own accounts), we observe scam-
mers heavily adopt anonymous payment methods (e.g., cryp-
tocurrency, including Tether-ERC20 [63], Tether-TRC20 [64],
CGPay [65]) or use money mule-based payment methods (e.g.,
Idlefish Money Mule (Section VII-A) and Alipay Money
Mule). Scammers recruit money mules with Idlefish stores or
Alipay accounts to transfer gambling deposits. We observe
that scam apps sometimes disable bank payment channels and
only enable cryptocurrency and money mules, which may aim
to evade banks’ financial censorship. Interestingly, compared
to gambling scam apps, we find that most genuine gambling
apps deploy only traditional payment channels, such as credit
cards and wire transfers.

Compared to previous fraud research, our research intro-
duces the payment channels used in mobile gambling scams
and showcases new and stealthy channels for anonymous
transactions, i.e., Idlefish Money Mules, which supplements
the traditional payment approach mentioned by previous fraud
activities (e.g., credit card by [6], [14], [66], bank transfer by
[67], [68], online payment by [9], [66], [69] and cryptocur-
rency by [70], [71]).

Below, we characterize two typical payment channels of
mobile gambling apps — Idlefish Money Mule and Cryp-
tocurrency — and estimate the scamming revenue on these
two channels.

A. Idlefish Money Mule

In our study, we unveil a stealthy and previously-unknown
payment channel Idlefish Money Mule, which is adopted
by five scam apps in 100 investigated scam apps. Here we

Merchant Buyer

Idlefish Money Mule

Victim
Generating Counterfeit

Idlefish Orders

Peer Pay Link

Control

ScamApp

Funds the Account

Peer Pay Link

ߑ

ߓߒ

ߔ

Figure 7. The operational pipeline of Idlefish Money Mule.
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Figure 8. The transaction flow of Idlefish Money Mule.

summarize the operational pipeline of this payment channel
discovered in our research.

Operational pipeline. Figure 7 shows that in the payment
channel of Idlefish Money Mule, scammers recruit money
mules, who control sellers and buyers of a flea market app
called Idlefish [72], to transfer gambling deposits (Ê). More
specifically, when a victim funds the account to gamble (Ë),
a scam app will trigger a task, which asks a money mule
to generate an Idlefish order of the account (Ì) and then
return the Peer Pay Link, which is a kind of link generated to
allow the payment by other parties (i.e., peer). The Peer Pay
Link is associated with the counterfeit Idlefish order to the
victim (Í). After that, scam apps usually ask the victim to scan
the QR Code (which redirects the victim to the Peer Pay Link
webpage) to deposit money. The Peer Pay Link webpage looks
exactly the same as the normal online payment webpage (see
Figure 11), making the payment innocent. During the payment
procedure, victims do not need to register in IdleFish. Instead,
they pay via the Peer Pay Link in the Online Payment Apps
(e.g., AliPay). When finishing the purchase on Idlefish, the
money mule will transfer the income and obtain commissions.

Paralleling the Idlefish Money Mule with a traditional
money mule [13] in the underground marketplaces, the Idlefish
money mule do not require goods to be shipped. The money
mules only provide fake product purchasing orders (both the
buyer and seller of the transaction are the money mules
themselves) and ask the victims to pay for this order.

Revenue analysis. As mentioned earlier, we repeatedly placed
deposit requests on scam apps with Idlefish Money Mule

11



for one month, from January 1, 2021, to January 31, 2021.
From analyzing network requests of the scam app, we ob-
serve that each Idlefish payment request is associated with
a unique payment link (e.g., ppage.jgrkjo.cn/zfb/pc/10648**),
which records the Idlefish product, its price and a timestamp.
Interestingly, the last seven-digit number of the payment link is
uniquely and continuously indexed with each payment request.
After a short period (about five minutes), the payment status
will be changed to “paid” or “expired”, and the page shows
either “this order has been paid” or “this order has been
expired.” By traversing these auto-increment payment links,
we are able to collect all the paid payment links of our
measurement duration (26,731 in total).

Since deposits via this payment channel do not necessarily
come from the gambling scam apps, we refer to the daily
revenue as an “upper bound” estimation. Inspired by [71], we
filter potentially unrelated transactions to victims by known
deposit payment patterns. For example, some scam apps only
allow users to deposit ¥2,000, ¥5,000 or ¥10,000 CNY (about
$307, $769, $1538 USD). Thus, transactions differing from
those amounts will be eliminated. This method enables us to
estimate the revenue under the payment channel of Idlefish
Money Mule. To this end, we study 17,144 payment records,
where yields a revenue of $400,000 USD per day with 553.03
transactions. The daily revenue from the Idlefish is about 60x
larger than the cryptocurrency payment channel (as discussed
in Section VII-B). Its average transaction amount is 2.7x, while
the number of transactions is 22.3x. We observe that the peak
often occurs between 10:00 and 13:00 and the valley from
4:00 - 8:00 (UTC+8). There are no transactions between 23:00
- 24:00, which may be their server downtime for maintenance.
Here we acknowledge the limitation of our revenue analysis:
while we have tried our best to eliminate transactions unrelated
to victims, the transactions used for revenue estimation could
still include non-gambling scam deposits. Hence, we consider
the results as the “upper bound” estimation.

Payment request characteristics. Given those payment links,
we extract 1,500 Idlefish product information entries in the cat-
egories of furniture (47.4%), clothes (14.6%), jewels (8.1%),
handbags (6.13%), etc. Interestingly, we observe the prices of
these products are always in full thousands and largely deviate
from the normal prices (e.g., a pencil sharpener for $1,538
USD).

We determine 631 products with significant price deviation
(i.e., the price is 10 times more than the normal price; Here
the normal price is calculated from the average price of top-
20 search results for the same product in Idlefish) and search
for them on Idlefish to identify the potential Idlefish stores
of these products for manual validation. In this way, we find
110 Idlefish stores uniquely associated with these products.
When we try to bypass the gambling platform to purchase
these products, these stores all claim products have been sold
out and refuse to sell. Surprisingly, Idlefish label all of those
stores as highly reputable. We have reported our findings to
Idlefish, which has taken down those illicit stores.
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Figure 9. The transaction flow of Cryptocurrency payment.

Finding XII: We unveil a stealthy and previously unknown
payment channel, Idlefish Money Mule, and observe up to
$400,000 USD daily revenue in this channel.

B. Cryptocurrency Payment

In our study, we collect 19 Tether (USDT) addresses
related to cryptocurrency payments. Due to the transaction
traceability of Tether, we can estimate the upper bound of
total gambling deposits under these addresses. Specifically,
we gather all transactions of these 19 addresses via List
Token Transfer Events Restful API provided by ether-
scan.io [73], api.trongrid.io [74] for Tether-ERC20 and Tether-
TRC20, respectively. Similar to the “upper bound” analysis of
Idlefish Money Mule, we filter transactions that are potentially
unrelated to victims by known deposit payment patterns.
Some scam apps only allow users to deposit money at least
¥100 CNY (about $15 USD). Thus transactions less than
this threshold are eliminated. This enables us to estimate the
revenue under the payment channel of Tether. To this end, we
collected 7,900 payment records from 19 Tether addresses.

Figure 9 illustrates gambling deposit volumes over time. We
observe that the average daily revenue of each Tether address
ranges from $185.05 to $25,296.07 USD, with an average
of $6,620.57 USD. The average number of transactions per
day is 24.78, with $267.13 USD per transaction. The list of
cryptocurrency addresses can be found in Table XVII.

Finding XIII: Gambling scam apps are in favor of Tether
(USDT) and CGPay as the Cryptocurrency payment chan-
nel.

VIII. DISCUSSION

Our study analyzes a ground-truth dataset of mobile gam-
bling scams with 1,487 scam apps and 1,461 incident reports,
which is the largest confirmed scam apps and ground-truth
incident records dataset ever reported. We found evidence
through our extensive analyses of the kill chain of mobile
gambling scams ranging from social engineering tricks to
scam app generation and distribution, which fuels the inter-
national scam activities. When interpreted by professionals,
our initial results demonstrate useful findings and may be
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used downstream by law enforcement and public policymakers
for impactful structural interventions to the mobile gambling
scam. In particular, we suggest a suite of mitigation approaches
below.

A fundamental prerequisite to mitigate such security issues
is the effective detection of gambling scam apps on a large
scale. In our study, we profile scam apps to point out po-
tential features that can be used for detection. Specifically,
considering characteristics of scam apps, instead of operating
maliciously (e.g., stealing personal information), we find the
design of scam apps aim at (1) increasing users’ “sticki-
ness,” e.g., integrating push service to send users notifications
(Section VI-B); (2) guaranteeing app reachability, e.g., using
the sideloading technique (Section VI-A) with low minimum
platform API level requirement (Section VI-D); (3) equipped
with stealthy payment channels, especially those anonymous
payment methods such as cryptocurrency and money mule
(Section VII). Different from web-based fraudulent activi-
ties, we observe scam apps usually distributed via one-on-
one conversations on IM and social apps (e.g., dating apps)
(Section V-B). We suggest deploying a chatbot to gather
threat intelligence (i.e., app download link) related to such
scamming activities, further empowering the scam app detec-
tion. In addition, we provide the details of abusive apps in
Appendix E (Table XIII, XIV, XV, XVI and X), which can
also help the community to understand this threat.

Perhaps importantly, our study sheds light on two rela-
tively under-explored stakeholders in mobile scam activities,
i.e., online app generators, which was abused for scam app
generation, and the flea market app (e.g., Idlefish), where
money mules host illicit stores for money laundering. We
suggest these two parties contribute to the disruption of the
mobile gambling scam, e.g., flea market apps should deploy
techniques to detect stores involved in money laundering
(such as selling products with abnormal prices or suspicious
transactions).

In addition, educating mobile users is still one of the most
effective ways to prevent individuals from being scammed [6],
[75]. We recommend passing on knowledge about social
engineering tricks (Section V) as scam awareness training
materials, including how scammers establish connections with
victims, how scammers promote scam apps, how scammers
lure victims to continually deposit money and explaining
the gambling scam logic. Our investigation (Section VI-A)
also reveals that few scamming apps are indexed in famous
application markets like Apple App Store or Google Play.
Avoiding downloading apps from unauthorized channels is
recommended to battle scam apps.
Responsible Disclosure. We reported the abuse of online app
generators, push services, app signing services, and money
mules payment channels to the affected parties and received
responses and acknowledges from Apple, HUAWEI, Xiaomi,
Getui, DCloud and Idlefish. APICloud and JPush expressed
gratitude for our help and mentioned that they would cooperate
with the law enforcement departments for further action.
Unfortunately, we did not receive any response from Meizu

after contacting them several times until paper submission.
The detail of responsible disclosure can be found at [76].

IX. RELATED WORKS

Studies on phishing and scam activities. Numerous studies
have looked into phishing [77], [78], [79], [80] and scam activ-
ity [5], [6], [4] profiling and detection. For example, Kharraz
et al. [5] automatically identified the survey scam ecosystem
using learning techniques. Miramirkhani et al. [6] performed
a systematic study of technical support scams and identified
their infrastructure and campaign. Dam et al. [4] performed
large-scale analysis of pop-up scams on typosquatting URLs
and present characteristics of such web-based scam campaigns.
Hao et al. [13] gave insights into the underground economy
behind reshipping scams, which launder money through ac-
quiring expensive goods via stolen credit cards. Park et al. [25]
presented a data-driven empirical analysis of targeted Nigerian
scams observed on Craigslist based on a scam dataset collected
by experiment. Apart from the web-based scam, a mobile-
based scam shows quite different technical details and luring
strategies. FraudDroid [8] dynamically analyzes the app’s UI
state transition and network traffic to detect ad fraud in mobile
Android apps. Hu et al. [9] performed a study to detect
and comprehend the characteristics of fraudulent dating apps.
Unlike previous research, which is mainly based on external
measurement without the validation of scamming behaviors,
with the help of ground-truth data of mobile gambling scam
apps, we are capable of analysing this new trending scam with
the kill chain of gambling scams.

The closest to our study are [81] and [82], which discuss
the ecosystem of online gambling and their third-party online
payment and network infrastructures. However, both papers
focus on online gambling instead of the gambling scam.

Malicious/Illicit mobile apps detection and analysis. Ma-
licious/illicit mobile apps detection has been studied for
long. On the Android platform, Zhou et al. [83] system-
atized or characterized existing Android malware with more
than 1,200 samples. Arp et al. [84] combined static anal-
ysis and linear Support Vector Machines (SVM) technique
to detect Android malware Applications with explanations.
Zhang et al. [85] classified Android malware via dependency
graphs by extracting a weighted contextual API dependency
graph as program semantics to construct feature sets. More
recently, Mclaughlin et al. [86] proposed a new detection
method for Android malware that uses a deep Convolutional
Neural Network (CNN). The neural network automatically
learns malware features from the raw opcode series, thereby
eliminating the need for hand-engineered malware features.
Zhang et al. [87] proposed to incorporate domain knowledge
into machine learning models to better detect fast-evolving
malware variants.

Different from numerous malware analysis works on An-
droid, little has been done on iOS applications. PiOS [88]
leverages static analysis to detect privacy leakage in iOS
apps. iRiS [89] also proposes a dynamic analysis approach
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by porting Valgrind to iOS to find the abuse of private APIs.
Damopoulos et al. [90] dynamically analyzed iOS software
in terms of method invocation to detect malicious code.
Garcia et al. [91] investigated the features belonging to iOS
malware and classified samples of 36 iOS malware families
discovered between 2009 and 2015. Cimitile et al. [92] de-
signed a malware detector aimed at malicious iOS samples
exploiting machine learning and an opcode-based feature set.
Lee et al. [93] reported the first measurement study on iOS
apps with hidden crowdturfing UIs.

In contrast to the apps handled by previous works, gambling
scam apps usually do not use private APIs or present patterns
of malicious behaviors, which the aforementioned detection
tools cannot detect. Instead, our study analyzes a ground-truth
dataset to profile scam apps to point out potential features that
can be used for detection. Considering the findings of OAG
abuse, [46] reported the security issues/vulnerabilities of OAG
itself, which had a different study scope, compared with our
work. Recently, [47] mainly focused on unwanted distribution
channels vectors on Android devices. They discovered that
some OAGs were abused to generate and publish unwanted
apps (some of them were used to promote fraud ads). In this
paper, we take a step closer to real-world scam gambling ac-
tivities and report that the OAGs have been used in real-world
gambling scams. Besides, our study shows that some OAGs’
certificates have been abused to sign other gambling scam apps
(but not generated), which advances the understanding of the
OAG abuse.

X. CONCLUSION

With the rapid growth and popularity of mobile markets
today, mobile gambling scams have caused tremendous fi-
nancial damage to individuals and corporations. This paper
provides the first empirical study based on ground-truth data
of the mobile gambling scam consisting of 1,461 scam incident
reports associated with 1,068 Android apps and 419 iOS
apps provided by an Anonymous Authority. In particular,
we reveal social engineering techniques used by miscreants
via a qualitative analysis of these mobile gambling scam
incident reports. Such knowledge can be used as materials for
scam awareness training. In addition, we develop a suite of
measurement and dedicated reverse-engineering tools which
enabled us to characterize both Android and iOS gambling
scam apps, including their development frameworks, declared
permissions, the compatibility, and the backend network in-
frastructure. Our research reported two abused public online
app generators, i.e., DCloud and APICloud, used by miscreants
to create and sign scam apps. Moving forward, we also
examine the payment channels used by mobile scam apps and
estimate the revenue of the mobile gambling scam under the
payment channel of cryptocurrency and Idlefish Money Mule.
Our findings bring new insight into the mobile gambling scam
ecosystem. Such understanding and artifacts will help better
defend against mobile gambling scam activities.
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APPENDIX A
IOS APP SIDELOADING OPERATIONAL PIPELINE

Specifically, as shown in Figure 10, victims can sideload
a scam app through the following five steps: (1) Click the
‘Install” from mobile browser; (2) Allow to download the
configuration profile (a.k.a., enterprise certificate); (3) Install
the configuration profile; (4) Enter a passcode; (5) App starts
to install automatically.

Reviews

Download

Phoenix Lottery

Download

Phoenix Lottery

Phoenix Lottery [ Click "Install"]

Authorize App installation to next step

Downloading: 40%

Phoenix Lottery

Reviews

Figure 10. iOS Gambling Scam Apps Sideloading Operational Pipeline

APPENDIX B
POPULAR MOBILE APP DEVELOPMENT FRAMEWORK

Table VII
POPULAR MOBILE APP DEVELOPMENT FRAMEWORKS

APICloud AppCan Appcelerator Appian

AppsBuilder Bizagi CocoaTouch Cocos2dx

Cordova Corona DCloud Ext JS

Flutter Framework7 Intel App Framework Intel XDK

Ionic Framework jQuery Mobile Kissflow LungoJS

Mobile Angular UI Mobincube Monaca Mono

Native Script Onsen UI PhoneGap React Native

Sencha Touch SproutCore Swiftic Unity3D

WeX5 Xamarin Zoho Creator

APPENDIX C
TOP GAMBLING SCAM APP CLUSTERS

Table VIII
TOP-5 ANDROID SCAM APP CLUSTERS

# Apps # Certs % Top-1 Cert # Prefix % Top-1 Prefix # Backend URLs # Backend Domains

555 2 86.8 4 81.4 547 543

56 2 67.9 55 3.6 55 55

44 2 93.2 34 25.0 42 42

43 43 2.3 43 2.3 172 60

36 2 86.1 6 66.7 26 26
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Table IX
TOP-5 IOS SCAM APP CLUSTERS

# Apps # Certs % Top-1 Cert # Prefix % Top-1 Prefix # Backend URLs # Backend Domains

191 40 26.2 1 100.0 190 190

141 76 9.2 7 92.2 141 141

31 22 9.7 1 100.0 31 31

30 22 13.3 29 6.7 73 65

17 1 100.0 1 100.0 17 17

APPENDIX D
BACKEND SERVER INFORMATION OF GAMBLING SCAM

APPS

Table X
TOP-5 DOMAIN CONTACTED BY THE SCAM APPS

Domain Number

appapi.fhptcdn.com 16

www.lebogame.co 15

jfnchaba.hhmusgxoosbb.com 15

nsiugaba.jyvgpprtfmaa.com 15

isjnhaba.mefvjpodsypb.com 15

Table XI
TOP-5 OLDEST DISTRIBUTORS USED BY THE SCAM APPS

Domain SLD Registration Time

www.lebogame.co lebogame.co 2015-04-09 23:03:22

webapi.bjsjdf.cn bjsjdf.cn 2017-09-14 17:20:11

jkedappg.ctrldoremiwwr.com ctrldoremiwwr.com 2017-10-24 09:50:13

fd5aappg.ctrldoremiabc.com ctrldoremiabc.com 2017-10-26 05:50:04

appapi.fhptcdn.com fhptcdn.com 2017-10-30 08:01:18

Table XII
TOP-5 AS WITH IP RELATED TO THE SCAM APPS

AS Number AS # IP

133199 SonderCloud Limited 2282

59371 Dimension Network & Communication Limited 1214

4837 China Unicom 369

4134 China Telecom 179

55720 Gigabit Hosting Sdn Bhd 100

APPENDIX E
DETAILED INFORMATION ABOUT GAMBLING SCAM APP

Table XVI
TOP-5 ISSUERS OF IOS SCAM APPS

Issuer Number

Qingdao Silver Century Health Industry Group Co., Ltd 49

Petrochina Pipeline Company 29

Hangzhou Anve Technology Co., Ltd 20

AFFISHAUL WORLDWIDE, LLC 18

Yixinlian Mediacal Technology (Beijing) Co., Ltd 14

Table XIII
TOP-5 ANDROID PACKAGE NAME PREFIXES

Prefix Number

com.yibo.* 452

com.qq11.* 100

io.fhpt.* 28

com.log.* 24

com.ying.* 18

Table XIV
TOP-5 IOS BUNDLE IDENTIFIER PREFIXES

Prefix Number

com.yibo.* 222

com.mobile.* 130

io.fhpt.* 18

hb.com.* 5

com.ying.* 4

Table XV
TOP-5 ISSUERS OF ANDROID SCAM APPS

Issuer SHA-1 Number

yibo 713e483e2023d79fa49e2ef72106796e5482e5d6 482

Digital Haven (Beijing) Network Technology Co., Ltd baad093a82829fb432a7b28cb4ccf0e9f37dae58 137

test ec544b1220066a8d20a752ff917a8a67379fcaf6 73

a 1029e04097cbc2f152dee7d6b8d3d70339afdc1c 31

Beijing Hurricane mobile Co.,Ltd 78be780e089d25f76e263ce6db0c29599fd86066 18

Table XVII
TETHER ADDRESS IDENTIFIED IN GAMBLING SCAM APPS

Network Address

Ethereum 0x5313f2ffc31eeda6cb1fb6bcb972554f2d51d244

Ethereum 0x765efd79917896fa95d6fd9ae2c5d2447e9a5064

Ethereum 0x29abcea3c25f043a9aef7c5674e3d04f1821a487

Ethereum 0x9c26e05a466fff4ba5577adf6c4a897fe2e65933

Ethereum 0xa568c99c7e71dbc7a53973e9b1bb561741baf6a3

Ethereum 0xfb01c3c95b1d639b929312574b5576408f850f11

Ethereum 0x808627f44a63fe598eaf0f8b35643e171111323c

Ethereum 0x4b3fdffb57d6a87f26e6919befdf09b4829464ec

Ethereum 0x4dd6577e22c9eaaa3ad206583987ee3f147b5d6d

Tron TCyUTagTJSodXZq12Pg91LrihevtuoxcTs

Tron TRcNUA3afmDrVGLwinbC7VrrP7Tf8Yx994

Tron TDHZ1jSdMx1JvzT9eFLd363vTqf9pKJf5D

Tron TRdyfUskhp5CTZh4Hw2UhmkzeuQKicZn2U

Tron TRHDFyJK8cMxR66sEkNEuM4HkaDQx4zPr4

Tron TDaLVErcpma3j9hKKvvoR5hX2o9icZb9cX

Tron TF3A6jeDBei3dwmzhC9imCvbPgxnaGdwuP

Tron TWz3aeSjRrKi5eQgBEiNTpMYg5x3jDXP6r

Tron TCpDZFQ4MQD1CgPMkwWCZnGin9hmjFN7Kb
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APPENDIX F
PEER PAY LINK WEBPAGE SCREENSHOT

Peer Pay
* Island  Itimate Trading Co., Ltd.:

I found a nice product on the Taobao.com, please
pay it for me. I will be grateful.

Peer Par Amount

Peer Pay Order Information

Secured Transactions – Fairly New 38

Peer Pay Notification

1. The Peer Pay is designed for the convenience of families and 
friends to pay for others. Please use the Peer Pay within the 
scope permitted by laws and regulations. To avoid being 
scammed, you must double check the order with your families 
and friends.
2. If the order is refunded, the payment amount will be refunded 
to the payer.
3. The payment amount is subject to the current page.

Pay generously

Figure 11. Peer Pay Link Webpage Screenshot
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