
When Fun Turns Toxic: A First Look at Aggressive Advertising in Mini-games

Pei Chen†, Geng Hong†B, Yicheng Qin†, Huazhe Wang†, Mengying Wu†, Min Yang†B, Ziru Zhao§,
Yuanpeng Zhu§ and Tao Su§

†Fudan University, §vivo Mobile Communication Co., Ltd
B Co-corresponding authors

Abstract
Mini-games have emerged as a dominant paradigm within
super-app ecosystems, enabling lightweight services like ca-
sual games to reach millions of users instantly. While official
advertisement interfaces simplify monetization, the ease of
integration and insufficient oversight have led to aggressive
and potentially deceptive advertising practices, severely de-
grading the user experience. Aggressive advertising, though
not malware, still subverts platform security boundaries by
abusing legitimate APIs to bypass auditing, manipulate user
interaction, and undermine platform trust, constituting a sys-
temic security risk rather than mere policy violation.

In this work, we conduct the first systematic security anal-
ysis of aggressive advertising in mini-games. We analyze
platform policies and developer capabilities across nine mini-
game platforms, and characterize aggressive advertising be-
haviors. We further design a scalable detection framework,
MAAD, and perform a large-scale measurement across three
major platforms, i.e., WeChat, Facebook Instant Games, and
Quickgame, revealing that 49.95% of mini-games exhibit ag-
gressive advertising, including cases in highly popular titles
with over 100k user reviews. Our analysis further uncovers
their disruptive behavioral patterns, such as game-specific
triggers, excessive pop-up frequency, and misleading strate-
gies, as well as adversarial bypass techniques. These findings
uncover that aggressive advertising constitutes a widespread
form of platform abuse enabled by structural blind spots in
current enforcement mechanisms. We provide actionable im-
plications for strengthening platform governance, detection,
and long-term ecosystem resilience.

1 Introduction

Mini-games, which can be played instantly by clicking on
links without downloading and installation, are rapidly rising
in popularity and attracting a large number of users. In China,
the mini-game market reached approximately USD 5.5 billion
in 2024, nearly doubling from the previous year and under-
scoring its explosive growth [24]. This prosperity is evident

 Repeated pop-ups every +15s

① An ad appears. ③ Ad reappears after 15s.

Advertisement Detail

AD
Advertisement Detail

AD

② User closes ad.

Figure 1: Examples of Aggressive Advertising: Unstoppable
Advertising. The user is repeatedly interrupted by advertise-
ment pop-ups every 15 seconds, making it impossible to close
the advertisements and continue the game permanently.

as major platforms such as WeChat [60], Facebook [20], and
QuickGame [49] have embraced mini-game as a mainstream
feature to attract users of their ecosystems.

Unlike app-based native games, which often monetize
through paid downloads and/or in-app purchases [3, 26], most
mini-games generate income primarily through advertise-
ments [24]. However, the advertisement APIs provided by
mini-game platforms give developers fine-grained control
over when, where, and how advertisements appear, turning
monetization mechanisms into a capability surface that can
be misused. For example, Figure 1 shows an aggressive mis-
use where an interstitial advertisement is triggered in the
middle of play, and after the user closes it, a new advertise-
ment returns five seconds later, creating an unstoppable loop
that severely disrupts gameplay. Platforms have published
advertising guidelines to limit such behaviors. For instance,
Facebook Instant Games requires interstitial advertisements
to appear only at natural breaks in gameplay rather than inter-
rupting user interactions [45].

Nevertheless, existing work on mini-app ecosystems has
concentrated on vulnerabilities or privacy of the mini-app
system [39, 43, 50, 67, 71, 73]. Yang et al. [72] provides
the first large-scale empirical characterization of evasive ma-
licious mini-apps in the market. They identify an adware
family that abuses monetization by fabricating advertisement
impressions to defraud advertisers, distinct from the aggres-

sive, user-facing advertising we study. Moreover, existing
work primarily targets general mini-apps and thus overlooks
the gameplay-specific interaction patterns and development
practices unique to mini-game, leaving a gap in understanding
the prevalence, characteristics, and detection of aggressive
advertising in the mini-game ecosystem.
Our Work. This paper provides the first systematic un-
derstanding of aggressive advertising threats in mini-game.
Specifically, we analyze the policies specified in the platform
to characterize the scope of such behaviors. We examined the
advertising policies of the top 15 mini-app marketplaces [73],
among which nine support mini-games. Through this analy-
sis, we identify four categories of aggressive advertising, en-
compassing 14 specific behaviors. In parallel, we studied the
advertisement integration process from a developer’s perspec-
tive. To understand the capabilities available to developers
for embedding advertisements into mini-games, we analyzed
ad-related APIs across nine platforms and found that controls
such as size, position, and close-button options can enable
intrusive, repeatable advertising patterns.

Based on this understanding, we design a static analysis
framework MAAD, to detect and analyze aggressive advertis-
ing in mini-games built with Cocos [12], which is the largest
market share of mini-games. However, the direct application
of existing static analysis techniques in aggressive advertising
poses significant challenges. (C1) Heavy engine coupling and
deeply nested advertising logic make whole-program anal-
ysis prohibitively expensive. To address this, we develop a
lightweight module extraction and pruning technique that
isolates a small set of relevant modules for focused analysis.
(C2) Cocos’s resource management disperses advertising call
chains across multiple files and languages, which complicates
confirming whether a user event triggers an advertisement. We
reverse-engineer the engine’s resource decoding and imple-
ment an interpreter that reconstructs resource resolution and
recovers call chains. (C3) Advertising behaviors involve a rich
user-interaction context rather than mere advertisement occur-
rence, which is insufficient to determine aggressiveness. We
model Ad-behavior with five concise dimensions (User Event,
Triggering Condition, UI Semantic, Advertisement Type, Call
Path) and combine static reachability analysis with semantic
rules to identify aggressive behaviors.

We evaluated MAAD on a ground-truth dataset of 100 man-
ually labeled mini-games, achieving a precision of 94.57%.
Over 81% of mini-games were analyzed within 10 minutes
each. In a one-month deployment on an anonymous coop-
erating platform, MAAD demonstrates practical utility for
platform auditing at scale.
Aggresive Advertising in-the-wild. We apply MAAD to con-
duct a large-scale empirical study across three popular mini-
game marketplaces, including WeChat [17], Facebook [20],
Quickgame [49]. Across the three platforms, 49.95% of ad-
enabled games contained aggressive advertising, most com-
monly interruptive advertising that forcibly disrupts gameplay.

We even identified aggressive advertising in highly popular
games with over 100k user reviews, which highlights their
broad impact on user experience. Beyond prevalence, we char-
acterized how these games exploit game-specific triggers to
ensure advertisement exposure, configure popup intervals that
exceed platform restrictions, and adopt diverse misleading
strategies to induce unintended clicks.

Furthermore, our measurement reveals the presence of ad-
versarial techniques in aggressive advertising. Developers
deliberately attempt to evade platform review, with 94.09%
of bypass cases relying on dynamic cloud-controlled triggers
that suppress advertising during audits and re-enable it after-
ward. These strategies are intentionally exploited to under-
mine single-round or runtime-only audit workflows, thereby
compromising the integrity of the review pipeline and expos-
ing a fundamental weakness in platform governance.

We have reported the 456 detected aggressive mini-games
to their respective platforms. As of the submission date, two
of the three marketplaces had acknowledged the threats, result-
ing in the removal of 43.32% of the detected games, validating
the effectiveness of our detection.

Overall, our findings show that aggressive advertising is not
merely a usability concern but a systemic form of capability
abuse that threatens platform trust. Addressing these security
risks will require stronger multi-stage auditing, more trans-
parent enforcement policies, and closer coordination among
platforms, researchers, and regulators to ensure a more re-
silient mini-game ecosystem.
Contribution. The contributions of this paper are as follows:
• The first systematic security analysis of aggressive adver-

tising behaviors in mini-games, based on platform policies
and developer practices, laying the foundation for understand-
ing and regulating this emerging threat.

• An automated static analysis framework that detects ag-
gressive advertising with 94.57% precision, analyzing most
games within 10 minutes, enabling scalable and practical
auditing for real-world deployment.

• A large-scale empirical measurement across three major
platforms, demonstrating that 49.95% of ad-enabled mini-
games exhibit aggressive advertising behaviors, exposing a
widespread, systemic security threat.

2 Background

2.1 Advertisement in Mini-game
Mini-game. Mini-games are lightweight gaming applications
that run within super-app platforms such as WeChat. Com-
pared to traditional mobile games, they require no installation,
have smaller resource footprints, and support rapid loading,
making them a popular form of casual entertainment dis-
tributed through platform-native social sharing.
Architecture. Mini-games execute inside WebGL-based
game engines (e.g., Cocos [13], Laya [33]), rather than page-

Table 1: Prohibition of Aggressive Advertising in Mini-game Platform Policies. ✓ indicates the platform prohibits such
aggressive advertising in official policies.

Aggressive Advertising Behavior Mini-game Platform

Category Description of Behaviors

Interruptive Advertising
1. Unanticipated mid-game pop-ups disrupting gameplay ✓ ✓ ✓ ✓ ✓ ✓
2. Blocking progress until ad completion ✓ ✓ ✓ ✓
3. Overlapping ads obscuring functional controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hijacking Advertising
1. Functional buttons reprogrammed to trigger ads ✓
2. Unexpected clickable areas redirecting to ads ✓ ✓
3. Hidden or delayed close buttons prolonging ad exposure ✓ ✓ ✓ ✓

Unstoppable Advertising

1. High-frequency pop-ups within short intervals ✓ ✓ ✓ ✓ ✓
2. Ads reappearing after closure ✓
3. Concurrent display of multiple ads on one screen ✓ ✓ ✓ ✓ ✓ ✓
4. Overlapping multiple ads at one place ✓ ✓

Deceptive Advertising

1. Misleading text/image to attract clicks ✓ ✓ ✓ ✓ ✓
2. Exploiting habitual tapping to induce mis-clicks ✓ ✓ ✓
3. Reward ads shown without required disclosure ✓ ✓
4. Visually disguised as non-ad interface elements ✓ ✓

Platforms: WeChat Mini Game, Facebook Instant Game, QuickGame, VK Mini Game, Baidu Mini Game, Alipay Mini Game,
TikTok Instant Game, Kuaishou Mini Game, UC Browser Game.

routed mini-app frameworks. As illustrated in Figure 2, the en-
gine mediates all execution: it manages scripts and resources,
maintains the rendering and physics loops, and adapts plat-
form services such as networking, payments, and advertis-
ing. Application logic is therefore funneled through a heavy-
weight engine layer that intertwines multiple subsystems. This
engine-centric design produces deeply entangled call chains,
asset-driven control flow, demanding analysis methods dis-
tinct from those for mini-apps.

Advertising-Driven Business Model. Most mini-games
adopt a free-to-play model, reflecting the social and low-
friction nature of super-app platforms [73]. To support moneti-
zation, platforms offer official advertising interfaces, allowing
developers to embed advertisements and track impressions for
revenue easily. Unlike in traditional app ecosystems, advertise-
ment placement in mini-games is often developer-controlled
and loosely enforced, making advertising both a key revenue
source and a potential vector for abuse.

ResourcesConfigModule ScriptsDeveloper Layer

Game Engine

Platform Runtime (Super-app SDKs & OS Support)

Resource
Management

Scripting
Runtime

2D/3D
Rendering

Platform Adapter (Ads, Payments) & System Services

Physics
Interaction

Figure 2: System Architecture of Mini-games. The game
engine serves as the core component of the mini-game.

2.2 Threat Model
The adversary is a legitimate mini-game developer who aims
to increase revenue by manipulating when, where, and how of-
ten advertisements appear. Their capabilities are limited to the
platform’s official advertising APIs, since platforms prohibit
other integration channels. They can only invoke permissi-
ble calls within their own mini-game by adjusting scripts,i.e.,
placement, timing, and frequency. They cannot alter advertise-
ment content, forge billing signals, or compromise platform
infrastructure.

Adversarial behaviors do not constitute ad-fraud, but they
degrade user experience and erode trust, harming to the plat-
form’s reputation and ecosystem. We assume that the platform
has access to the complete mini-game package during review
and can analyze it for potential abuses.

2.3 Platform Policies on Advertising
To clarify the policy boundaries of in-game advertising,
we systematically surveyed the top 15 popular mini-app
marketplaces [73], 9 of which support mini-game. We col-
lected their advertising policies specific to mini-game, or
to mini-apps in general, when no dedicated rules were pro-
vided [2, 4, 19, 31, 44, 59, 62, 64, 66].

We examined the policy documents by filtering with the
keyword “ad” and manually categorized the relevant clauses
into 4 categories of aggressive advertising, with 14 concrete
behaviors 1. Two authors independently performed the anno-

1Some super-app platforms may impose content restrictions (e.g., pri-
vacy, legality). However, in mini-game advertising, advertisement content is
typically controlled by advertisers rather than developers. Content-related
violations are thus beyond the scope of this study and were not included in
our classification.

tation, which process is provided in Appendix A. The four
categories are:

• Interruptive Advertising: advertising that forcibly dis-
rupts normal gameplay flow.

• Hijacking Advertising: advertising that takes over user
operation or navigation in unexpected ways.

• Unstoppable Advertising: advertising that cannot be
closed permanently or reappears in a short interval.

• Deceptive Advertising: advertising that misleads or in-
duces users to click through disguised cues.

As shown in Table 1, every platform prohibits at least one
type of interruptive advertising, reflecting a shared consen-
sus that advertising must not obstruct or unduly disrupt core
gameplay. Among platforms, WeChat and QuickGame en-
force the most comprehensive restrictions, which is consistent
with their large user bases and relatively mature compliance
systems. In particular, WeChat adopts a graded enforcement
mechanism, imposing penalties ranging from warnings and
temporary suspension to permanent bans and revenue deduc-
tions [70]. In contrast, VK [66] and UC [62] specify only two
prohibitions, indicating weaker regulatory coverage.

Notably, although some behaviors remain uncovered in
some platform policies, they are still prohibited under
higher-level regional laws and regulations. For example,
China’s Advertising Law against interfering with normal user
operations[46], U.S. and EU requirements for “clear and un-
ambiguous” [14, 63], and explicit bans on “deceptive” in
China, the United States, and Russia[14, 22, 46]. These prin-
ciples are vague for concrete advertising behaviors, and no
unified industry standard exists. As a result, platform policies
differ in both definitions and enforcement. Furthermore, some
policies haven’t yet covered the category already highlighted
in their regional regulations. For example, Russia prohibits
deceptive advertising, yet VK’s policy does not mention it.

⇒ Takeaway I: Platform policies show a clear stance
against aggressive advertising and help reveal their be-
havioral patterns, while the breadth of policies varies
widely, with WeChat and QuickGame adopting the most
comprehensive restrictions.

2.4 Developer Capabilities in Integration
Advertisements Integration Process. In a developer’s per-
spective, the normal process of integrating advertisements in
mini-game starts with registering a payment account on the
advertising platform and creating IDs for different types of ad-
vertisements. The advertising platform offers various types of
advertisements to adapt to different game scene placements.

Then, developers need to choose an appropriate position to
create the advertisement object and set conditions for advertis-
ing. Developers have considerable freedom in this process and
can establish display relationships based on game progress
and user operations.

{
"paths":{

"42": ["UI/prefab_one", 0]
},
"types":[

"cc.prefab",
],
"uuids":[

…
"7cIX6k0BBOA5copQcAmXVP", // 42th element
…

],
"name": "resources",
"importBase": "import",

}

Save_Module:[
function(t,e,o){

cc.resources.load("UI/prefab_btn", function(err, prefab){
var newNode = cc.instantiate(prefab);
s = cc.find("Canvas");
cc.director.getScene().addChild(newNode);

});
…

},{},
],
…
UIItem_Module:[

function(t,e,o){
cc._RF.push(e, "3f966qPoSRMyK7q3vytKB91", "UIItem")
e.prototype.BTN_Cancel = function(){

…
var n = qg.createNativeAd(id,style);
n.show();

}
},{},

]

Index.js Config.json

Resources/import/7c/7c217ea4-d010-4e03-9728-a5070099754f.json

[{
"__type__": "cc.Prefab",
"_name": "UI/prefab_btn",
"data":{ "__id__": 1},

},{
"__type__": "cc.Node",
"_name": "btnNode",
"_parent": {"__id__": 1},
"_children": [{"__id__": 3},
"_components": [{

"__type__": "cc.Button",
"node": {"__id__": 2},
"clickEvents": [{

"__type__": "cc.ClickEvent",
"_componentId": "3f966qPoSRMyK7q3vytKB91",
"handler": "BTN_Cancel"

}]}],},{
"__type__": "cc.Node",
"_name": "btnLabel",
"_parent": {"__id__": 2},
"_components": [{

"__type__": "cc.Label",
"node": {"__id__": 3},
"_string": "CANCEL"

}]},]

id:1

id:2

id:3

Prefab:
UI/prefab_btn

Node:
btnNode

Node:
btnLabel

UI/prefab_btn
btnNode

CANCEL

btnLabel

Decompress uuid
& Route resource

❶ Load the resource

Trigger the handler
Save the game?

SAVE CANCEL

❷ User click the button

❸ Display the ad to the user

Request ad resource
From remote ad server

Figure 3: Advertising Integration Progress of an Mini-game.
❶ Initially, the game loads and renders the page resources,
with the red line indicating the loading process for button re-
sources. ❷ Next, the user clicks the “CANCEL” button on the
mini-game screen, with the blue line indicating the callback
control flow after the click. ❸ Finally, the game creates an
advertisement instance through the ad-API and requests ad-
vertisements from the mini-game platform, displaying them
on the screen, as indicated by the yellow line.

After development is completed, a typical process through
which an advertisement is displayed to the user is shown in
Figure 3. Step ❶: Resource Loading. The mini-game uses
cc.resources.load to load the resource from a specified
path, consults the config file to locate the corresponding short-
UUID, restores the UUID via Cocos’ decoding and decom-
pression, and assembles the final resource path. It then returns
to the loading point and renders the resource component in
the user’s view. Step ❷: Button Clicking. When the user clicks
a component button, a click event in the resource is triggered.
As resources are organized in a tree structure, some prefabs
contain cc.button sub-nodes whose callback handlers and
positions are recorded in their clickEvents. The text “CAN-
CEL” on the button conveys semantic information. Parsing
the handler in the resource file allows locating the correct
callback function. Step ❸: Advertisement Popping-up. In the
callback, the mini-game invokes qg.createNativeAd to re-
quest advertising resources from the remote server using the
developer’s ID, and the advertisement is then presented.

Finally, the advertising platform calculates the developer’s
earnings based on specific advertising frequencies. Common
billing methods in mini-games include Cost-Per-Click (CPC)
and Cost-Per-Mile (CPM). CPC requires users to click on the
advertisement content, while CPM only requires display. That

is why some developers are trying to increase the pop-ups
and set aggressive advertising as much as possible.
Developer Capabilities. Since greater modification freedom
may enable developers to craft aggressive advertising, we
further analyzed the design of advertisement APIs provided
by mini-game platforms to understand which aspects legit-
imate developers are allowed to modify, which helps us to
better analyze the aggressive advertising. By analyzing the
ad-related API documentation and implementation examples
from the nine platforms that support mini-games, we identi-
fied several key parameters in API design that may influence
the risk of aggressive advertising, i.e., pop-up size, pop-up
position, refresh frequency, and customization.

As shown in Table 2, on most platforms, banners allow cus-
tomizable size and position. While such flexibility increases
design freedom, it also enables aggressive practices. Improper
parameter choices can result in oversized or centrally placed
banners that obscure gameplay elements, or in advertisements
overlapping with functional buttons, thereby forcing user at-
tention and inducing accidental clicks. Some platforms (e.g.,
WeChat and QuickGame) constrain adjustment ranges to miti-
gate misuse. For example, WeChat requires banner widths no
less than 300px, and QuickGame enforces interstitial widths
between 720–1080px, while both forbid off-screen render-
ing [61, 65]. While these safeguards prevent ad-fraud [53],
they do not meaningfully restrict aggressive practices. Devel-
opers can still exploit the permitted ranges to enlarge banners,
intrude on gameplay areas, or stack multiple advertisements,
thereby sustaining a wide space for aggressive behaviors.

Additionally, we also identified a platform-specific param-
eter option on VK, i.e., developers can choose to remove the
close button of the advertisement box. To evaluate its prac-
tical effect, we randomly sampled 50 VK mini-games that
include banners and inspected their banner API usage, find-
ing that 18/50 (36%) explicitly set the optional parameter
can_close=false, rendering banners without a close button
and thus depriving users of the ability to dismiss them, and
importantly when the parameter was omitted the API’s de-
fault behavior was false. These results demonstrate that this
parameter option is dangerous because it enables persistent,
non-dismissible banners and therefore poses a concrete risk
of developer-driven misuse.

Rewarded videos, in contrast, are uniformly full-screen
and non-configurable across platforms. Due to their intrusive
nature, most platforms require clear user consent or precon-
ditions for display. As summarized in Table 1, unsolicited
reward pop-ups are considered policy violations.

⇒ Takeaway II: Flexible ad-API parameters expand
creative freedom but also enable aggressive misuse, mak-
ing parameter values a critical factor for risk analy-
sis. Unfortunately, existing constraints are insufficient
to curb such misuse, and in some cases (e.g., VK’s

can_close=false option) even introduce risky de-
faults enabling non-dismissible advertisements.

3 Detecting Aggressive Advertising

In this section, we design and implement a static analysis
framework, MAAD (Mini-game Aggressive Advertising De-
tector), to detect aggressive advertising in mini-games, target-
ing Cocos-based games as they constitute the largest share of
the ecosystem and offer a representative basis for analysis.

3.1 Challenges & Insights
Before detailing our system design, we summarize the main
challenges and our key insights into the detection architecture.

Challenge 1: How to isolate advertising logic when en-
gine coupling renders whole-program analysis prohibitively
expensive. To facilitate low-code development and optimize
loading speed and user interaction, modern game engines
adopt modular dynamic loading, physics-based rendering,
and other advanced interaction mechanisms. These design
choices inevitably increase call-chain depth and tightly cou-
ple advertising logic with unrelated functional code, making
it difficult for static analysis tools to locate ad-related execu-
tion paths directly. As a result, state-of-the-art static analysis
methods often become trapped within deeply nested engine
structures [77].

Insight 1: Lightweight module extraction enables focused
analysis. Although the engine codebase is large and com-
plex, ad-trigger logic typically clusters within a limited set
of modules, and the inter-module dependency patterns of
these modules remain relatively stable. As illustrated in Fig-
ure 4, the yellow-highlighted regions represent modules and
their dependency relationships. By constructing a dependency
graph from explicit module declarations, we can identify and
retain only those modules likely to contain advertising be-
havior, while pruning away unrelated ones. This lightweight
extraction substantially reduces the scope of analysis with-
out sacrificing coverage of ad-trigger flows. In practice, we
leverage modular dependency analysis to strip out common
engine code and apply pruning to eliminate irrelevant mod-
ules, thereby avoiding costly whole-program parsing and im-
proving the efficiency of detection.

Challenge 2: How to trace user events in mini-games where
resource management disperses call chains across diverse
files and languages. User-triggered events are often linked
to specific mini-game scenarios, but their binding relation-
ships are distributed across multiple files and programming
languages. For example in Figure 3, in mini-games, event-
binding data may be split between module scripts, configura-
tion files, and resources, with mappings established dynami-
cally depending on the engine’s resource management. This
distributed, cross-language structure lacks a unified index,

Table 2: Flexibility of API Parameter across Mini-game Platforms. W=Width, H=Height, X=Horizontal, Y=Vertical.

Advertisement in Mini-game Mini-game Platform

Ad Type Typical Appearance API Parameter

Banner Thin strip at bottom

Pop-up Size W – – – – W W W/H W/H
Pop-up Position X/Y – Y Top/Bottom – X/Y X/Y X/Y X/Y
Refresh Frequency ≥30s – – – – ≥30s ≥30s ≥30s -
Customization – – – Disable close – – – – –

Interstitial Centered popup
Pop-up Size W – W – – – – – –
Pop-up Position X/Y – X/Y – – – – – –
Refresh Frequency ≥30s – – – – – – – –

Box Portal Sidebar Icon Grid
Pop-up Size W/H – – – – – Grid count – –
Pop-up Position X/Y – Y – – – X/Y – –
Refresh Frequency ≥30s – – – – – – – –

Reward Video Full-screen video – – – – – – – – – –

Platforms: WeChat Mini Game, Facebook Instant Game, QuickGame, VK Mini Game, Baidu Mini Game, Alipay Mini Game, TikTok
Instant Game, Kuaishou Mini Game, UC Browser Game.

1 Window.__require = (function e(r, t, n) {
2 function o(i, u) {
3 …
4 }
5 for (var l = "function" == typeof __require && __require,

i = 0; i < n.length; i++)
6 o(n[i]); // Traverse all modules in n (module list)
7 return o;
8 })(
9 {
10 HelloWorld: [
11 function (t, e, o) {
12 …
13 a = t("../ADSDK") // Read dependency
14 a.BannerAd.show()
15 …
16 },
17 {"../ADSDK": "ADSDK"}, // Navigate dependency
18],
19 ADSDK: [
20 function (e, r) {…},
21 {},
22],
23 },
24 {},
25 ["HelloWorld", "ADSDK"]
26);

Dynamic Module Loader Module Module List

Index.js (After packing HelloWorld.ts and ADSDK.ts)

Module Dependency

Loader Implementation

Module Implementation

Loading Process

Figure 4: Module Management in Cocos Mini-games. The
modules are traversed by dependencies at runtime.

making it challenging for static analysis to trace the complete
call chain.

Insight 2: An interpreter reconstructs dispersed traces, in-
spired by reverse-engineering. By reverse-engineering how
the Cocos engine parses and links resource files, we gain
insights into the conventions and rules governing cross-
language references. While call chains of events are frag-
mented across multiple languages, resource file naming con-
ventions, configuration fields, and function signatures typ-
ically follow recognizable patterns, e.g., UUID’s compres-
sion and decompression. Leveraging this understanding, we
exploit cross-file pattern matching and recover mappings be-
tween configurations and scripts, making it possible to rebuild
the user events without executing the program.

Challenge 3: How to analyze aggressive advertising behav-
iors that depend on rich user interactions rather than mere
occurrence. Aggressive advertising behaviors in mini-games

often depend on multiple interacting factors that extend be-
yond what a pure call-chain can capture. As shown in Table 1,
most advertising behaviors involve explicit trigger conditions,
such as time intervals, user interactions, or state-dependent
checks, while certain behaviors like deceptive advertising
additionally require semantic analysis about whether the trig-
gered interfaces are misleading. Moreover, as illustrated in
Table 2, aggressive behavior may also arise from specific
modifications to API parameters. These complex advertis-
ing behavior cannot be holistically expressed within a call-
graph–only framework, revealing a fundamental modeling
gap in representing multi-condition aggressive advertising.

Insight 3: Multi-dimensional modeling enables unified de-
tection of aggressive advertising. Despite the diversity of
aggressive advertising, the factors driving aggressive adver-
tising behaviors are often localized and structurally regular
within the codebase. Trigger conditions typically appear in
event handlers as predicate checks (e.g., time checker), decep-
tion cues can be approximated by analyzing textual or layout
features in the triggered interface, and API-parameter devi-
ations from platform defaults can identify driven behaviors.
By modeling these heterogeneous cues in a unified predi-
cate–resource–parameter representation, we can bridge the
gap between structural reachability and behavioral semantics.

To operationalize this observation, we enrich the formal be-
havioral model capable of capturing heterogeneous cues from
multiple sources. Specifically, each (potential) advertisement
is represented as an Ad-behavior, formally defined as:

⟨ User Event, Triggering Condition,User Inter−
f ace Semantic, Advertisement Type, Call Path⟩

(1)

Here, the first three elements describe the user-triggered event,
the logical state at the time of triggering, and the user-interface
context in which the advertisement appears. The Advertise-
ment Type denotes the display format (e.g., banner, interstitial),
while the Call Path records the sequence of invoked functions,

enabling differentiation of behavior variants.
For example, the behavior illustrated in Figure 3, where a

cancel button unexpectedly triggers an interstitial pop-up, can
be expressed as:

⟨ click button, null, ′′CANCEL′′, interstitial,

[UI/Pre f ab_btn, BT N_Cancel, createNativeAd] ⟩
(2)

This tuple-based representation unifies control-flow structure,
logic condition, and semantic context into a single analytical
unit, closing the identified modeling gap for multi-condition
aggressive advertising behavior.

3.2 Design Architecture
We design and implement the static analysis framework
MAAD for mini-games to detect the Ad-behaviors from game
files. It takes a packaged mini-game as input and outputs the
aggressive Ad-behaviors report. Figure 5 shows our workflow.

Stage I unpacks the mini-game, then applies module-,
function-, and polyfill-level pruning to strip away engine
code and produce lightweight analysis targets. Based on Ad-
behavior, Stage II enhances context by reconstructing user
events, extracting trigger conditions, and analyzing UI seman-
tics. These elements are integrated into an interaction graph,
from which structured Ad-behaviors are extracted. Stage III
evaluates the extracted Ad-behavior against platform rules,
ultimately flagging aggressive advertising practices.

Stage I: Mini-game Code Pruning

unpack

Stage II: Ad-Behavior Extraction

Interaction
Graph

Stage III: Aggressiveness Detection

Aggressive
Advertising

Mini-game

Lightweight Code

Platform Policies
& Documents

Rules

Ad-behaviors

Ad-behavior Modeling

Ad-behavior ExtractionContext Enhancement

Resource Config Code

User Event Reconstruction

UI Semantic Extraction

Trigger. Condition Extraction

Module-level Pruning

Function-level Pruning

Engine-free Code Extraction

Polyfill-level Pruning

UI Semantic

Ad. Type Trigger-Cond.

User Event

Call Path

Figure 5: The Three-Stage Workflow of MAAD.

3.3 Stage I: Mini-game Code Pruning
In mini-games, game engines help developers easily construct
mini-game programs. However, their high coupling and en-
gine code complexity also impose significant costs on static
analysis. To address this challenge, we apply a dedicated code

pruning pipeline that simplifies the game code to improve
analysis efficiency. Our design centers on three pruning tech-
niques, each applied at a different code granularity: module-
level dependency pruning, function-level reachability pruning,
and polyfill-level nesting pruning.

Module-level Dependency Pruning. Mini-game projects of-
ten include a wide range of modules that are not relevant to
advertising behavior, such as those supporting physics inter-
action or animation rendering. Analyzing these modules not
only increases resource usage but also introduces noise to
downstream analysis. Fortunately, module dependencies are
explicitly declared in the engine’s management structure. As
illustrated in Figure 4, a module (e.g., Helloworld) invokes
functions defined in external modules (line 13-14), while the
actual dependency is indexed as the last argument in the mod-
ule (line 17). This indexing pattern enables reliable extraction
of inter-module relationships. Based on this structure, we
construct a global module dependency graph, where nodes
represent modules and edges denote declared dependencies.
By identifying modules that invoke advertisement APIs as
entry points, we retain their reachable subgraphs and discard
all others, thereby reducing the codebase while preserving
dependency integrity.

Function-level Reachability Pruning. Beyond module-level
filtering, we further reduce the code by identifying functions
involved in ad-related execution paths. Building a complete
function call graph is prohibitively expensive, so we adopt
an approximate backward traversal approach. Starting from
known advertisement APIs, we iteratively locate their callers
based on text-level matching and expand the reachable set
until no new relevant functions are found. This method effec-
tively captures the advertising execution logic while minimiz-
ing analysis overhead.

Polyfill-level Nesting Pruning. To ensure compatibility with
ES5-only platforms such as WeChat [18], mini-game engines
automatically insert polyfill functions to emulate ES6+ fea-
tures. These polyfills, particularly those simulating inheri-
tance, introduce deeply nested and redundant structures that
burden static analysis. For example, the polyfill method of the
extends method in ES6, simply iterates through all classes in
the file for the parent class and assigns them to the child class
every time. In cases of multiple inheritance, when invoking
the child class, this recursive call of the polyfill method will
significantly consume computational resources. As a solution,
we identify these polyfill methods, remove the declarations
and related function calls of polyfill methods, and implement
a copy of the parent class method with an order of topological
sorting. This sorting ensures that the parent class being read
has already been processed, avoiding recursive inheritance
and thereby reducing complexity.

3.4 Stage II: Ad-Behavior Extraction

While Stage I prunes engine code into lightweight analysis
targets, this is insufficient for characterizing aggressive adver-
tising behaviors. Such behaviors depend not only on advertise-
ment occurrences but also on multiple dimensions, as modeled
in Section 3.1. Our key insight is that these heterogeneous
signals, though scattered across configurations, scripts, and
layouts, can be systematically reconstructed and integrated.
Stage II develops this graph through three analyses—user
event reconstruction, triggering condition extraction, and UI
semantic extraction—from which structured Ad-behaviors are
ultimately derived.
User Event Reconstruction. To faithfully capture how user
interactions in mini-games evolve into advertising behaviors,
MAAD reconstructs complete interaction-to-advertisement
pathways. Building on our reverse-engineering of the Cocos
resource parsing process (Insight 2), we leverage conventions
in file naming, configuration fields, and function signatures
to enrich the call graph and merge dispersed execution flows
into a coherent representation.

Concretely, MAAD maps callback handlers to their con-
trol scripts across heterogeneous files and programming lan-
guages. For each event type, we construct a dedicated entry
function and use identifier relationships recovered from con-
figuration files as the mapping hub to reconnect fragmented
logic. All reconstructed event entries are then consolidated
under a designated main entry, yielding a unified call that faith-
fully reflects advertising behaviors. Specifically, we model
four categories of event entries that capture user-triggered
interactions potentially leading to advertisements: (i) Button
Clicking. User interactions through explicit button clicks, typ-
ically specified in configuration files by the callback function
names of button components. (ii) Component State Switching.
Changes in the lifecycle states of in-game components, such
as onLoad, onEnable, and onDestroy. (iii) Screen Touching.
General screen-level interactions, that are modeled similarly
to clicks, but operate at the global screen level rather than be-
ing tied to a specific component. (iv) Object Collision. Phys-
ical interactions between game objects, as supported by the
engine’s physics module, which represent a game-specific
form of event triggering.
Triggering Condition Extraction. A plain call graph cap-
tures reachability but fails to account for the runtime predi-
cates that actually gate advertising triggers. Such conditions
are crucial, since aggressive behaviors often arise not from the
mere presence of an ad-API call, but from how frequently or
under what circumstances it is invoked. We therefore annotate
each candidate path with trigger conditions extracted from
AST/IR in two forms: (i) general predicates recovered from
control-flow constructs (e.g., if/else, switch/case), attached
as branch guards on edges; and (ii) time-related predicates
obtained from scheduler/delay APIs (e.g., schedule(a,t),
setTimeout(a,t)), encoded as temporal constraints on the

trigger node. These annotations are stored on the path and
propagated into the Ad-behavior.
User Interface Semantic Extraction. Paths alone do not
capture how an advertisement is presented at trigger time, yet
such presentation details are often central to determining ag-
gressiveness. To recover this information, we reconstruct the
UI context for each candidate path by linking the trigger node
to its corresponding scene and component resources. In partic-
ular, we record two cues: (i) textual content on the clickable
component and its child components, and (ii) layout position,
distinguishing default placements from explicitly specified
coordinates that may indicate manipulative placement, such
as misalignment or stacking. These attributes are attached to
the path and propagated into the Ad-behavior, ensuring the
later detection of semantics.
Ad-Behavior Extraction. By combining user events, trigger-
ing conditions, and UI semantics, we enrich the call graph into
a behavior-aware interaction graph. A depth-first search from
main entry to ad-API calls yields structured Ad-behaviors,
each annotated with attributes for subsequent detection.

3.5 Stage III: Aggressiveness Detection

After Stage II yields structured Ad-behaviors for each mini-
game, however, whether these Ad-behaviors are aggressive re-
mains undetermined. Building on our Ad-behavior model, we
treat each Ad-behavior as a unified analytical unit with multi-
ple information. On top of this abstraction, we design a rule-
based detector that evaluates Ad-behaviors against constraints
distilled from platform policies, thereby bridging structural
reachability with behavioral semantics.

Specifically, the detector translates advertising policies
from nine major mini-game platforms (Table 1) into exe-
cutable patterns over Ad-behaviors, encoding platform param-
eter setups (Table 2). We enforce standards that are explicitly
prohibited by each platform, while applying a unified default
threshold when no explicit rule is provided. When handling
unstoppable advertising behaviors, platform policies specify
two interval thresholds, 30s (Facebook [20], QuickGame [49])
and 60s (TikTok [47], Kuaishou [31]). To better capture ag-
gressive behaviors, we adopt the more conservative 30-second
threshold. The detector performs in three steps: (1) Load-
ing key behavior elements from the extracted Ad-behavior
(e.g., Ad type, function parameters); (2) Comparing these
elements against predefined thresholds derived from policy
(e.g., popup intervals); (3) Combine multiple conditions to
infer whether the Ad-behavior constitutes an aggressive cate-
gory (e.g., Ad type plus short interval indicates unstoppable
advertising). The multi-condition rules for each aggressive
advertising category are detailed in Appendix B.1. Beyond
structural constraints, we augment the detector with semantic
signals to capture inducive or misleading UI text, enabling the
detection of deceptive advertising behaviors. To this end, we
fine-tuned an XLM-RoBERTa-base classifier to identify in-

ducive intent in UI Semantic. Details of the classifier’s design
and evaluation are provided in Appendix B.2.

4 Evaluation

In this section, we evaluate MAAD in terms of its effectiveness
measured by precision and recall, its efficiency under different
pruning strategies, and its practical performance in large-scale
deployment.

4.1 Dataset & Implementation

Dataset. To support the effectiveness evaluation, we manu-
ally constructed a dataset of 371 Ad-behaviors. Specifically,
we obtained 100 real-world mini-games from an anonymous
official audit department. These cases originated from user
complaints between January and December 2023 and had
been validated by auditors, providing a realistic and represen-
tative basis for ground-truth aggressive behaviors.

For each mini-game, we conducted manual behavior label-
ing: we interacted with the game for five minutes to trigger
advertisements on physical devices, applied dynamic instru-
mentation to ad APIs to capture runtime logs and stack traces,
and then performed step-by-step reverse engineering along
the corresponding call paths to trace parameter flows. This
process produced 371 labeled Ad-behaviors, which were in-
dependently cross-checked by three researchers to ensure
consistency and accuracy.
Implementation. We implemented MAAD for the Cocos en-
gine. In MAAD, we use Esprima [27] to convert JavaScript
code to the AST. In order to unify the ES6+ syntax in the
code into ES5, we use swc [48] to downgrade ES6+ JavaScript
code. We chose WALA [8] for generating call graphs due to
its superior performance among evaluated tools, with compar-
ative results reported in Appendix C. We performed all the
experiments on an Ubuntu server with 224 GB of memory
and an Intel Xeon CPU with 32 cores.

4.2 Effectiveness Evaluation

We ran MAAD on all 100 mini-games in the dataset. As a
result, MAAD detected a total of 29,584 Ad-behaviors, with
a median of 66 and an average of 295.84. It is worth noting
that, we observed that one mini-game outputted more than
10,000 Ad-behaviors, resulting in the average of Ad-behaviors
being quite larger than the median (295.84 vs. 66). After
manually verifying the result, we found that it was not a false
positive. The large number of them comes from different
buttons in multiple scenes using the same callback, which can
be traversed and triggered during the dynamic analysis.
Precision. We checked the correctness of Ad-behaviors by
manual verification. Specifically, we randomly sampled 10 Ad-
behaviors from each mini-game (selecting all Ad-behaviors

Table 3: Precision and Recall Across Four Categories
Category Precision Recall

Interruptive Advertising 432 / 454 (95.15%) 219 / 255 (85.88%)
Hijacking Advertising 146 / 149 (97.98%) 56 / 72 (77.77%)
Unstoppable Advertising 253 / 277 (91.33%) 32 / 39 (82.05%)
Deceptive Advertising 23 / 23 (100.00%) 3 / 5 (60.00%)

Overall 854 / 903 (94.57%) 310 / 371 (83.55%)

if fewer than 10) to avoid clustering within a single advertis-
ing type, resulting in a total of 903 Ad-behaviors. Then, for
each sampled Ad-behaviors, we manually reverse-engineered
mini-games and verified whether User Event, Triggering Con-
dition, User Interface Semantic, Advertisement Type, and
Call Path match to MAAD output, confirming that 854/903
Ad-behaviors are correct, with a precision of 94.57%. Per-
category statistics are summarized in Table 3.

For false positives (FPs), there are two main factors. The
first factor is dynamic parameter passing in JavaScript. In
mini-game development, many functions use dynamic param-
eters to perform similar tasks, which makes it challenging for
static analysis to predict exact runtime behavior accurately.
For instance, frontend parameters at runtime control the game
level being played. However, static analysis tools, aiming for
completeness, connect all possible function parameters, result-
ing in non-existent Ad-behaviors. In this case, the unstoppable
category is more affected, because it depends on evaluating
parameter values against thresholds. When its decisive dy-
namic parameters fail to be extracted, and the static default
values exceed the threshold, the behavior is incorrectly re-
ported as a false positive. The second factor is polymorphism
and inheritance. To ensure compatibility across different plat-
forms, many handlers employ a polymorphic design with a
base class and multiple subclasses, each overriding methods
for platform-specific logic. When multiple platform handlers
occur in more than one stage of advertisement triggering,
we fail to force the tool to always choose the same platform
subclass in different handlers.
Recall. We compare the outputs with the dynamically labeled
behaviors in Section 4.1. We manually verified that there are
310/371 labeled behaviors as true positive outputs, with a
recall of 83.55%, which indicates the capability of detecting
the truly recorded Ad-behaviors (also see Table 3).

For false negatives (FNs), the primary reasons include the
inherently dynamic dispatch of JavaScript, obfuscation tech-
niques, and the integration of third-party plugins. Specifically,
we have observed an integration of third-party plugins based
on a state machine, which makes the tool miss the neces-
sary state-switching callback. Moreover, static analysis of
JavaScript has the obvious disadvantage of missing dynamic
call edges, particularly in non-trivial usages of indirect calls
such as bind or apply. This issue affects the hijacking cate-
gory more noticeably, because hijacking advertising relies on

button-click handlers, and developers may implement using
indirect calls. In addition, our inducive detection is text-based,
so two ground-truth cases using image-based inducement
cannot be captured and are counted as FNs.

4.3 Efficiency Evaluation

We tested the runtime efficiency of the MAAD. The time
overhead for analyzing each mini-game was measured as the
duration of the whole processing. Additionally, we conducted
an ablation study to evaluate the impact of each pruning strat-
egy in Section 3.3 on the time overhead.

0 20 40 60
Runtime (min)

0.0

0.2

0.4

0.6

0.8

CD
F

None
Prun(M)
Prun(F)
Prun(P)
Prun(M+F)
Prun(M+P)
Prun(F+P)
Prun(M+F+P)

Figure 6: Ablation Runtimes on Different Pruning Strategies.
This figure presents a comprehensive Cumulative Distribu-
tion Function (CDF) analysis of execution times when using
different combinations of Pruning strategies, encompassing
Module-level Pruning (M), Function-level Pruning (F), and
Polyfill-level Pruning (P). None represents not applying any
of the above strategies. In this Figure, None, Prun(F), Prun(P),
Prun(F+P) remain at 0 (all timeout within 60 min).

As shown in Figure 6, the bottom line is the baseline analy-
sis, which represents the WALA analysis of mini-game source
codes, excluding any additional processing. Each pruning
strategy performs better than the baseline. When we perform
all strategies, more than 87% of mini-games can be analyzed
within 60 minutes, and more than 81% of mini-games can
be analyzed within 10 minutes, demonstrating the efficiency
of our approach. It is noticeable that Polyfill Pruning is the
most efficient pruning strategy. One reason is that the poly-
fill methods, which are generated by mini-games packagers,
typically involve extensive traversal and deeply nested as-
signment operations, introducing substantial time overhead
to static analysis.

Furthermore, we also consider the potential effectiveness
loss during efficiency optimization. Polyfill-level Pruning (P))
Rewrites functions without altering the control logic, thus
won’t introduce effectiveness loss. We admit that in cases
where JavaScript includes reflection calls, relevant functions
may be mistakenly removed during Function-level Prun-
ing (F). We previously discussed this type of false negative
(FN) in RQ1, noting that it affects only a small number of

cases (3/61). Consequently, an application using all of the
strategies will provide optimal analytical performance.

4.4 Large-Scale Deployment
We validated the practicality of MAAD by deploying it on
over 1.6K real-world Cocos mini-games from a cooperating
platform. The tool identified aggressive behaviors in more
than half of the cases, demonstrating its scalability and effec-
tiveness (see Appendix D for details).

5 Real-World Measurement

Building upon the evaluation of our tool, we now conduct a
large-scale measurement study to examine the prevalence and
characteristics of aggressive advertising in real-world mini-
games. To this end, we collected mini-game packages from
popular super-app marketplaces. From the nine platforms an-
alyzed earlier, we selected WeChat Mini Game, Facebook
Instant Games, and QuickGame, as they host the largest mini-
game ecosystems with each exceeding 100 million monthly
active users (MAU) [11, 21, 58]. We then crawled the Game
category of these platforms using the open-source tool mini-
Crawler [74]. This process yielded 6,769 mini-games in total,
from which we further extracted 2,076 Cocos-based mini-
games (1,593 from WeChat, 312 from Facebook, and 171
from QuickGame). Based on this dataset, the remainder of
this section provides an overview of the advertising landscape,
a detailed analysis of the distribution and behavioral patterns
of aggressive advertising, and a summary of our findings re-
ported to platforms.

5.1 Aggressive Advertising Landscape
Applying MAAD to the collected dataset, we observed that
aggressive advertising behaviors are highly prevalent across
the three major platforms. As shown in Table 4, 49.95% of
ad-enabled mini-games contained at least one type of aggres-
sive advertising, underscoring developers’ strong incentive
to maximize impressions. Among the categories, interrup-
tive advertising was the most common: its triggering is tied
to engine lifecycle functions, allowing seamless embedding
into gameplay and guaranteeing that advertisements will be
displayed in a controlled manner. For aggressive advertising
behaviors that are not explicitly specified in certain platform
policies, we apply a unified detection criterion. Our result
shows that, although such behaviors appear at lower rates
compared to categories explicitly prohibited by platforms,
they are not absent across the platforms, e.g., Hijacking Ad-
vertising in WeChat (6.85%) and Facebook (4.82%). This
indicates that the absence of explicit policy constraints does
not imply the absence of risk, but rather reveals an emerg-
ing aggressive advertising behavior that may not yet be fully
recognized or addressed by current platform policies.

Table 4: Real-world Landscape of Aggressive Advertising across WeChat, Facebook, and QuickGame. Detection
follows platform-specific advertising policies, except where explicitly marked.

Mini-game Platform Interruptive Ads Hijacking Ads Unstoppable Ads Deceptive Ads Aggressive-Ad / With-Ad

WeChat Mini-game 289 (43.07%) 46 (6.85%)† 65 (9.69%)† 7 (1.04%) 315 / 671 (46.94%)
Facebook Instant Game 63 (43.45%) 7 (4.82%)† 29 (20.00%) 0 (0%)† 80 / 145 (55.17%)
QuickGame 55 (55.55%) 16 (16.16%) 17 (17.17%) 8 (8.08%) 62 / 99 (62.62%)

Total 407 (44.48%) 69 (7.54%) 111 (12.13%) 15 (1.64%) 457 / 915 (49.95%)
†

Marked categories not explicitly specified in platform policies. We detected using a unified cross-platform behavioral definition.

4-5 3-4 2-3 1-2 No Rating
User Rating

0

200

400

600

800

of

 M
in

i-a
m

es

WeChat Mini-game Total
WeChat Mini-game Aggressive
QuickGame Total
QuickGame Aggressive
WeChat Mini-game Aggressive %
QuickGame Aggressive %

0

20

40

60

80

100

Ag
gr

es
siv

e
Pe

rc
en

ta
ge

 (%
)

25.8% 23.3%

4.3%
0.0%

8.7%

36.8% 37.8%

50.0%

0.0%

42.6%

Figure 7: Distribution and Prevalence of Aggressive Advertis-
ing across User Rating Intervals in WeChat and QuickGame.

⇒ Takeaway III: 49.95% of ad-enabled mini-games
exhibit aggressive advertising behaviors, dominated by
interruptive advertising.

5.2 Profiling Aggressive-Ad Mini-games

Beyond measuring overall prevalence, we further investigate
the characteristics of mini-games with aggressive advertis-
ing, aiming to uncover their commonalities and distributional
preferences.
Game Popularity. To examine the relationship between pop-
ularity and aggressive advertising, we collected user ratings
from WeChat and QuickGame marketplaces. Since WeChat
adopts a five-star scale while QuickGame uses percentage
scores, we normalized both into a five-point scale.

Figure 7 illustrates the prevalence of aggressive advertising
across rating intervals. In QuickGame, lower-rated games ex-
hibit notably higher aggressive advertising rates (50.0% in the
2–3 rating), indicating that aggressive advertising strongly un-
dermines user experience. By contrast, WeChat mini-games
display that high-rated games contain the most aggressive ad-
vertising rates (25.8% in the 4–5 rating), suggesting that even
high-rated mini-games are willing to compromise user experi-
ence with aggressive advertising, alarming in the ecosystem.

Notably, among these mini-games, we identified eight mini-

Casual Puzzle

Other Games

Actio
n Adventure

Competitiv
e Racing

Business S
imulation

Strategy Games
Role Play

Flight Shooting
0

10

20

30

40

%
 o

f M
in

i-g
am

es

Non-aggressive Mini-games
Aggreesive Mini-games

Figure 8: Distribution of Game Category among Aggressive
and Non-aggressive Mini-games.

games with more than 100k user ratings that still contained
aggressive advertising. Given their large user base, the im-
pact of such practices is substantial. Reviews of six of these
popular mini-games explicitly mentioned advertising, most
often expressing dissatisfaction with the excessive frequency
of advertising and a wish for its reduction.

⇒ Takeaway IV: Aggressive advertising substantially
affects user experience: they drive down ratings in
QuickGame and persist even in highly popular games
with massive user bases (over 100k ratings), where users
frequently complain about excessive advertising.

Game Categories. We further analyzed the distribution of
aggressive advertising across different game categories, cov-
ering eight types: action adventure, role-playing, competitive
racing, flight shooting, business simulation, strategy, casual
puzzle, and others. Figure 8 presents the comparison between
aggressive and non-aggressive mini-games.

The results show that casual puzzle games dominate both
in absolute number and in aggressive advertising prevalence.
This trend can be explained by the lower development cost
and broader audience appeal of casual puzzle games, which
make them an attractive target for developers to maximize ad-
vertising revenue. Other categories, such as action adventure
and competitive racing, also contain aggressive advertising,

but their proportions are substantially smaller.

⇒ Takeaway V: Aggressive advertising is most con-
centrated in casual puzzle games, reflecting developers’
preference for low-cost, high-reach games as vehicles
for intrusive advertising.

Developer Clusters. We also examined the distribution of
aggressive advertising mini-games across developers. For
WeChat and QuickGame platforms, company-level informa-
tion was obtained from the official mini-game information
pages. After excluding unknown and individual developers,
we identified 126 companies in total, among which 40 had
published more than one mini-game containing aggressive
advertising. This finding suggests that aggressive advertis-
ing is not confined to isolated cases but tends to recur within
particular organizational clusters.

In addition, we observed substantial code-level similari-
ties among aggressive advertising mini-games. To measure
code duplication between any two mini-games, we used PMD-
CPD [1], an open-source copy–paste detection tool that iden-
tifies duplicated code fragments across programs using token-
based analysis. We identified 18 groups comprising 42 games
with highly similar or even identical code, spanning 31 compa-
nies. Two recurring patterns emerged: (i) different companies
publishing nearly identical code, which may indicate either
shared developer control across multiple firms or the adop-
tion of common prebuilt templates; and (ii) single companies
repeatedly releasing nearly identical games with only minor
modifications (e.g., renaming), thereby amplifying their pres-
ence in the marketplace.

⇒ Takeaway VI: Aggressive advertising mini-games
are not isolated incidents but cluster within certain com-
panies, with evidence of code reuse and template-driven
replication that amplify their ecosystem-wide impact.

Component
State

Switching

Button
Clicking

Screen Touching
Object Collision

Interstitial

Reward Video

Box Portal
Banner

Advertisement TypeUser Event

Figure 9: Relation of User Events and Advertisement Types
in Mini-games with Aggressive Advertising.

5.3 Behavioral Patterns of Aggressive-Ad
Beyond profiling games and developers, we further examine
the specific behavioral patterns through which aggressive
advertising manifests in mini-games. Our analysis focuses
on four aspects: the trigger selection, the pop-up frequency,
the misleading strategies, and the bypass techniques. These
dimensions provide a fine-grained view of how aggressive
advertising is operationalized in practice.
Trigger Selection. To understand how aggressive advertising
are triggered, we investigated the relationship between the
triggering user events and the types of advertisements in ag-
gressive Ad-behavior chosen by the developers, as illustrated
in Figure 9. Overall, interstitial and rewarded-video advertise-
ments are the most frequently adopted formats. Both occupy
the screen centrally or in full, effectively interrupting user
operations and disrupting gameplay. In terms of triggering
methods, developers most often relied on component state
switching and button clicks, with interstitials strongly associ-
ated with the former and rewarded videos with the latter.

Beyond these dominant patterns, we observed that object
collisions represent a unique, game-specific triggering mecha-
nism. Because collisions are inherently tied to player actions,
this approach is both covert and easily activated. Advertise-
ments often appeared precisely at critical gameplay moments,
covering control areas and inducing accidental clicks. In addi-
tion, we identified cases where advertisements were triggered
solely by screen touching. This approach is particularly dis-
ruptive: even an unintentional tap that does not correspond to
actual gameplay may forcibly invoke an ad, severely degrad-
ing the user experience.

⇒ Takeaway VII: Developers exploit game-specific
mechanisms such as object collisions and screen touches
to covertly trigger advertisements, maximizing their in-
evitability while severely degrading user experience.

1 2 3 5 10 20 30 50 100 200300
Time Interval (s) [Logarithmic Scale]

0

10

20

30

40

of

 M
in

i-g
am

es

30s 60s

Figure 10: Distribution of Advertisement Pop-up Intervals
(Log Scale). The red/orange lines denote platform policy
thresholds: 30s on Facebook and QuickGame, and 60s on
TikTok and Kuaishou.

Pop-up Frequency. We next examined how frequently ag-

gressive advertising is configured to appear. The interval here
refers to the elapsed time between consecutive pop-ups, with
shorter intervals indicating more aggressive behavior. From
the parameters of interval functions (e.g., schedule(a,t),
setTimeout(a,t)), we extracted developer-defined time in-
tervals and plotted their distribution in Figure 10.

We further compare them with two explicit platform poli-
cies: Facebook and QuickGame mandate at least 30 seconds
between advertising, while TikTok and Kuaishou require a
minimum of 60 seconds. Our results show that the major-
ity of mini-games using interval functions violate these re-
quirements, with 67.39% shorter than Facebook’s 30-second
threshold. This practice forces players to face recurrent inter-
ruptions at a much higher frequency than allowed, severely
degrading the gameplay experience.

⇒ Takeaway VIII: 67.39% of aggressive advertising
mini-games configured pop-up intervals shorter than
the 30s required by Facebook, severely disrupting user
experience through overly frequent interruptions.

Misleading Strategies. We identified two major forms of
misleading strategies that developers employ to increase ad-
vertising engagement. The first is hijacking, where normal
functional buttons are repurposed to trigger advertisements. In
particular, the most frequently hijacked buttons were “share”,
“start”, and “score”, all of which are integral to the mini-game
experience and thus naturally attract user clicks. By bind-
ing advertisements to these functions, developers ensure that
players encounter advertising during core interactions.

The second form is textual inducement, where develop-
ers deliberately craft misleading textual cues to lure users
into clicking advertisements. Typical keywords include “free”
and “double rewards”, often combined with urgency-evoking
modifiers such as “now” or “limited timing”, and reinforced
with exclamation marks to heighten the sense of immediacy.
This combination of reward-oriented wording and urgent tone
maximizes the likelihood of inducing unintended clicks.

⇒ Takeaway IX: Misleading strategies exploit either
functional hijacking of buttons or deceptive textual cues,
causing users to click advertisements unintentionally.

Bypass Techniques. Since super-app platforms have already
established review mechanisms requiring mini-games to pass
audits before release, aggressive advertising games face a
high risk of being detected and rejected. To retain aggressive
advertising while still securing approval and revenue, some
developers deliberately adopt technical bypass strategies.

We analyzed the trigger conditions in the measurement.
Based on whether the condition depends on data from network
API requests, there are two categories: static and dynamic.

• Static Bypass. Developers embed hard-coded conditions

that deliberately postpone or restrict advertising display. Typ-
ical examples include predefined time delays, disabling ad-
vertising during the first game load, requiring a large number
of interactions before triggering advertisements (count-based
triggers), or randomizing ad-related parameters to obscure
advertising presentation. These make it difficult for short-
duration or single-run audits to capture aggressive behaviors.
• Dynamic Bypass. Developers determine advertising be-

havior using values fetched from network API requests (cloud
control), such as IP-based gating, server-side flags, time win-
dows, or user/device signals. This approach is more flexible
because multiple predicates can be combined (for example,
region match and not-first-run and interaction-count,≥ k), and
the logic can be updated remotely without resubmitting the
game, which makes reproduction during audits challenging.

Across all bypass cases we analyzed, 94.09% relied on
dynamic, network-dependent triggers. The dominance of
cloud-controlled gating, together with its multi-condition flex-
ibility and server-side mutability, exposes a challenging weak-
ness in current review workflows.

⇒ Takeaway X: Developers employ diverse bypass
strategies, with 94.09% relying on dynamically con-
trolled triggers, reflecting the limits of single-round or
runtime-only audits in effectively curbing such abuses.

5.4 Reporting and Feedback

Finally, we reported the aggressive advertising mini-games
identified on the three platforms back to the respective
providers. Both the WeChat and QuickGame teams confirmed
the issues and expressed appreciation for our disclosure. In
contrast, Facebook did not provide a response before the sub-
mission of this paper. By the time of submission, 43.32%
of the reported mini-games had already been taken down by
the platforms, demonstrating both the practical value of our
detection results and the seriousness with which platforms
regard aggressive advertising violations.

6 Discussion

Ecosystem-Level Security Implication. This work repre-
sents the first systematic study of aggressive advertising be-
haviors in the mini-game ecosystem. Our findings show that
aggressive advertising is not an isolated usability issue but a
systemic threat shaped by diverse platform policies and de-
veloper practices. Prior studies on policy inconsistency have
mainly focused on privacy protection [68, 73] and content
moderation [51], while the terms of use governing in-game
advertising have received far less attention. Through a com-
prehensive policy analysis and real-world measurement, we
find that inconsistencies across platforms and uneven enforce-
ment create gaps that allow aggressive advertising to persist

at scale. These gaps further lead to practical consequences.
Platforms lack a clear baseline for enforcement, developers
lack best practices for compliance, and users face inconsis-
tent experiences across platforms and unclear boundaries of
their rights. By revealing these issues, our study and tool aim
to make aggressive advertising more visible and to support
healthier ecosystem development.

Evolving Game of Online Deception. Aggressive adver-
tising in mini-games represents an evolving form of online
deception [41, 42] rather than a simple misuse of platform
mechanisms. Our study characterizes the current landscape
of such deceptive behaviors and presents a configurable, scal-
able detection framework. In adversarial settings, platform
enforcement and developer behavior follow an arms-race dy-
namic [6, 53], leading to more evasive and adaptive forms
of deception that fixed rule sets cannot fully capture. This
suggests the need for iterative refinement of detection mecha-
nisms to address the long-term dynamics of online deception.

Technical Scalability. MAAD can be easily scaled and also of-
fers insights for future technical improvements. First, the rule
system is configurable. Thresholds differ across platforms,
e.g., 60 seconds on TikTok. MAAD encodes these values as
configurable parameters, allowing adaptation. Second, MAAD
is platform-extensible. We have already implemented pro-
totypes on six platforms (WeChat, Facebook, QuickGame,
Alipay, Baidu, and VK). With appropriate preprocessing, the
framework can be ported to additional platforms with minimal
engineering effort. Third, MAAD’s ideas, e.g., bundle-aware
pruning and event-entry reconstruction, can reduce bundle-
ingrated overhead and enable hybrid static–dynamic analyses
on broader JavaScript program analysis.

Limitations. MAAD is bounded by Cocos-centric design and
static analysis challenges, including dynamic parameter pass-
ing, JavaScript polymorphism, and obfuscation as noted in
Section 4.2. Limited by our sample size and the fact that dy-
namic interaction cannot exhaustively trigger all behaviors,
some aggressive behaviors, particularly deceptive advertising,
have lower support numbers, which may introduce poten-
tial bias in the following evaluation and measurement. Our
measurement covers three major platforms, though broader
coverage may reveal additional patterns. We focus on textual
inducement, and we admit that MAAD can not fully cover
all kinds of deception, i.e., image-based or multimodal in-
ducements are out of scope. To enhance deceptive behavior
detection, future work may leverage dark pattern detection
techniques from the UI domain [9, 42]. Finally, MAAD relies
solely on static analysis, so that certain behaviors that depend
on real-time rendering or visual interaction properties, such
as advertising overlapping, may require hybrid techniques to
achieve reliable detection.

7 Related Work

Game Security. Research on game security mainly addresses
game vulnerabilities, bot detection, and cheating. For vulner-
abilities, Tao et al. [57], Zuo and Lin [77] identify payment
security flaws in gaming platforms, Liu et al. [37] expose mis-
use of cloud gaming resources via malicious injections, and
Macklon et al. [40] detect visual bugs in web-based games.
Numerous studies [30, 35, 54, 56, 76] target game bots in on-
line and mobile environments. For cheating, Bethea et al. [5]
proposes a symbolic-execution method, Bursztein et al. [6]
uncovers map hacking with a defensive strategy, and others
[10, 29] leverage deep learning to detect cheating in first-
person shooters. In summary, prior work mainly addressed
vulnerabilities and cheating in games, while our study is the
first to examine aggressive advertising in mini-games.
Mini-app Ecosystem Security. In the mini-app ecosystem,
prior research has explored diverse security issues span-
ning vulnerabilities, API abuses, cross-mini-app attacks, mal-
ware, and privacy leakage. Early work examined flaws, such
as resource-management vulnerabilities in app-in-app sys-
tems [39] and identity confusion problems [73]. Subsequent
studies revealed API-related risks, including undocumented
interfaces [69], cross-platform discrepancies [68], and their
exploitation in WeChat and other super apps. Researchers
also demonstrated attack vectors, such as access-control flaws
and phishing [39], race conditions [74], and cross mini-app
request forgery [71]. Meanwhile, another line of work focuses
on malicious or privacy-invasive behaviors, including large-
scale characterization of mini-app malware [72], credential
leakage through mini-app ecosystems [50], and privacy leaks
tracked via taint-analysis frameworks like WeMint [43], Mini-
Tracker [34], and TaintMini [67]. Existing mini-app analyzing
frameworks face a significant challenge in parsing the mini-
game due to its integration with gaming engine. MAAD offers
an effective solution to mini-game ecosystem.
Advertisement Security. The abuse of advertising for profit
has spurred extensive research on advertisement security. One
line of work focuses on ad fraud. Springborn and Barford [53]
analyze impression fraud via PPV networks, DECAF [36] de-
tects ads violating network policies, and others [7, 15, 28, 75]
address click fraud, including large-scale click farms [55]. An-
other line of work focuses on malicious advertisements. Liu
et al. [38] conduct a comprehensive study of malicious adver-
tisement content. Son et al. [52] discloses the issues that adver-
tisers utilize malicious advertisements to infer sensitive user
information by accessing external storage. Other research ex-
amines deceptive content and dark patterns [9, 41, 42], which
identify misleading ads or manipulative UI designs based
on textual, visual, and layout cues, focusing on user-visible
content or interface structures. In contrast, our work analyzes
advertising abuse at the mini-game program level, capturing
how deceptive or aggressive ads are enforced through event-
driven logic beyond UI.

8 Conclusion

This paper presented the first systematic investigation of ag-
gressive advertising in the mini-game ecosystem. Through
the implementation of MAAD and our large-scale measure-
ment study, we revealed both the prevalence and characteristic
patterns of such behaviors across major platforms. Our find-
ings highlight the feasibility of static analysis for large-scale
auditing and underscore the need for sustained technical and
regulatory efforts to mitigate aggressive advertising as a sys-
temic threat to ecosystem integrity.

Acknowledgements

We would like to thank the anonymous reviewers for their
valuable comments, which improved the quality of the paper.
This work was supported by the New Generation Artificial
Intelligence-National Science and Technology Major Project
(No. 2025ZD0123204). Min Yang is a faculty of Shanghai
Institute of Intelligent Electronics & Systems and Engineering
Research Center of Cyber Security Auditing and Monitoring,
and Shanghai Collaborative Innovation Center of Intelligent
Visual Computing, Ministry of Education, China.

Ethical Considerations

In conducting this work, we paid close attention to the ethical
dimensions of our methodology and its potential impact. In
particular, we considered five stakeholder groups that may be
impacted: (i) mini-game players, (ii) mini-game developers,
(iii) mini-game platforms, (iv) research community, and (v)
our own research team. For each group, we discuss the guiding
ethical principles, the potential harms, the mitigations we
applied, and our rationale for publishing.

(i) Mini-game Players. Principles: Following Beneficence
and Respect for Persons, we aim to protect players from in-
trusive advertising and respect their privacy. Harms: Play-
ers may face degraded gameplay, frustration, or unintended
costs; misuse of research artifacts could worsen these risks.
Mitigations: We do not collect personal data, account infor-
mation, or behavioral logs. Our analysis is limited to static
packages and reported only in aggregate, ensuring no individ-
ual player is implicated. Moreover, our findings are framed to
highlight protective implications rather than to provide misuse
instructions. Decision: Publishing increases transparency and
informs stronger enforcement, ultimately benefiting players
while keeping risks minimal.

(ii) Mini-game Developers. Principles: Guided by Justice
and Respect for Persons, we avoid stigmatizing developers
and distinguish systemic issues from individual misconduct.
Harms: Developers could face reputational damage or indirect
economic effects if platforms tighten policies. Mitigations:
All major mini-game platforms (e.g., WeChat, Facebook In-

stant Games) state in their developer agreements that submit-
ted games are subject to compliance and safety reviews by the
platform. Developers are required to submit a full mini-game
package, including scripts, resources, and metadata, for pre-
release review and publication. Our detection pipeline treats
all samples equally and operates without accessing developer-
identifying information. All analyzed packages were obtained
from public sources, ensuring compliance with platform poli-
cies and preventing undue exposure of individual developers.
Decision: We remove all developer personally identifiable
information in disclosure. MAAD can also assist developers
in self-assessing their mini-games for compliance.

(iii) Mini-game Platforms. Principles: Consistent with
Respect for Law and Public Interest, Beneficence, and Justice,
we acknowledge platforms’ duty to protect users and the need
for fair evaluation. Harms: Platforms may face reputational
or regulatory pressure, and technical details could be abused
if misused. Mitigations: We conducted responsible disclosure
through official channels prior to publication, notifying plat-
forms of risky parameter settings and default behaviors. In
addition, we reported the aggressive mini-games identified
in our measurement study (Section 5) back to the respective
providers. Both the WeChat and QuickGame teams confirmed
the issues and expressed appreciation for our disclosure, while
Facebook did not respond before submission. By the submis-
sion deadline, 68.86% of the reported mini-games had already
been removed by the platforms, demonstrating both the prac-
tical value of our detection results and the seriousness with
which platforms regard aggressive advertising violations. In
presenting our results, we use neutral framing that emphasizes
ecosystem-wide challenges rather than attributing fault to a
specific platform. We also deliberately omit implementation
details that could facilitate adversarial exploitation. Decision:
While disclosure may create short-term concerns, it strength-
ens compliance and user protection in the long run.

(iv) Research Community. Principles: Following Benefi-
cence, Justice, and Respect for Law and Public Interest, we
aim to advance understanding while ensuring fair and respon-
sible access. Harms: Excessive detail could enable evasion,
while overly restricting artifacts may hinder reproducibility.
Mitigations: We strike a balance by releasing curated arti-
facts that support reproducibility without enabling abuse. Pub-
licly released materials include the source code of MAAD,
anonymized test cases, and documents. For platform-specific
rule-matching components, we provide a packaged decision
system rather than exposing raw patterns, preventing adver-
saries from directly extracting patterns for targeted evasion.
Sensitive details—such as adversarial case studies—are with-
held or abstracted. This approach complies with the confer-
ence’s Open Science requirements while mitigating dual-use
risks. Decision: Selective disclosure maximizes academic
value while minimizing misuse.

(v) Research Team. Principles: In line with Accountability,
Beneficence, and Justice, we commit to rigorous and trans-

parent research. Harms: Risks include reputational damage
if labeling is biased or if data provenance is unclear. Mitiga-
tions: To mitigate these risks, three independent researchers
labeled portions of the dataset, with disagreements resolved
through consensus to minimize individual bias. Clear label-
ing guidelines were developed in advance, and the process
was documented to ensure reproducibility. All test data was
collected exclusively from publicly available sources (open-
source crawler MiniCrawler [74]), ensuring compliance with
platform policies and avoiding any unauthorized access. The
annotated data used for evaluation was anonymized and re-
stricted to the minimum necessary scope, preventing any un-
necessary exposure of developers or users. Decision: Careful
annotation, transparency, and exclusive use of public data
make our process ethically sound and its dissemination bene-
ficial to both research and society.

Open Science

In accordance with the USENIX Security Open Science pol-
icy, we provide the following artifacts necessary to evaluate
our contributions:

(i) Source code of MAAD: The full implementation of our
static analysis framework, including mini-game code pruning,
Ad-behavior extraction, and aggressiveness detection mod-
ules.

(ii) Anonymized test cases: A collection of representa-
tive mini-games from six different platforms, curated and
anonymized to demonstrate the cross-platform compatibility
of MAAD.

(iii) Documentation: Detailed materials that describe the
workflow of MAAD, the configuration of the experimental
environment, a step-by-step usage guide, and explanations of
the output file formats.

All artifacts are available at the following link: https:
//doi.org/10.5281/zenodo.18227703. Sensitive or proprietary
content (e.g., raw user traffic, unmodified platform submis-
sions) has been excluded to prevent potential misuse.

References

[1] Pmd copy/paste detector (cpd). https://pmd.github.io/
pmd/pmd_userdocs_cpd.html, 2025.

[2] Alipay Open Platform. Mini program advertising rules,
2024. URL https://opendocs.alipay.com/rules/0a9d84.

[3] Apple Inc. In-app purchase, 2025. URL https://develo
per.apple.com/in-app-purchase/.

[4] Baidu Smart Program. Operations specification – viola-
tive advertising behavior, 2024. URL https://smartprogr
am.baidu.com/docs/operations/specification/.

[5] Darrell Bethea, Robert A Cochran, and Michael K Re-
iter. Server-side verification of client behavior in online
games. ACM Transactions on Information and System
Security (TISSEC), 14(4):1–27, 2008.

[6] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, and
Dan Boneh. Openconflict: Preventing real time map
hacks in online games. In 2011 IEEE Symposium on
Security and Privacy, pages 506–520. IEEE, 2011.

[7] Chenhong Cao, Yi Gao, Yang Luo, Mingyuan Xia, Wei
Dong, Chun Chen, and Xue Liu. Adsherlock: efficient
and deployable click fraud detection for mobile applica-
tions. IEEE Transactions on Mobile Computing, 20(4):
1285–1297, 2020.

[8] IBM T.J. Watson Research Center. Wala: T.j. watson
libraries for analysis, 2012. URL https://github.com/w
ala/WALA.

[9] Jieshan Chen, Jiamou Sun, Sidong Feng, Zhenchang
Xing, Qinghua Lu, Xiwei Xu, and Chunyang Chen. Un-
veiling the tricks: Automated detection of dark patterns
in mobile applications. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’23), pages 114–133, 2023. doi:
10.1145/3586183.3606783.

[10] Minyeop Choi, Gihyuk Ko, and Sang Kil Cha.
{BotScreen}: Trust everybody, but cut the aimbots your-
self. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 481–498, 2023.

[11] Cocos. Oppo & vivo games of the year announced,
cocos developers win big, 2021. URL https://www.co
cos.com/en/post/oppo-vivo-games-of-the-year-annou
nced-cocos-developers-win-big.

[12] Cocos. How to make a great game with cocos creator.
https://www.cocos.com/en/post/b9cf16c6bc32c1f73b
d7a762c6dc43e0, 2024.

[13] Cocos Technology Co., Ltd. Cocos creator: A free,
open-source, cross-platform game engine, 2024. URL
https://www.cocos.com/en/creator.

[14] Federal Trade Commission. Advertising and marketing,
2025. URL https://www.ftc.gov/business-guidance/ad
vertising-marketing.

[15] Jonathan Crussell, Ryan Stevens, and Hao Chen. Mad-
fraud: Investigating ad fraud in android applications. In
Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, pages
123–134, 2014.

[16] cwi swat. Field-based Call Graph Construction for
JavaScript. https://github.com/cwi-swat/javascript
-call-graph, 2014.

https://doi.org/10.5281/zenodo.18227703
https://doi.org/10.5281/zenodo.18227703
https://pmd.github.io/pmd/pmd_userdocs_cpd.html
https://pmd.github.io/pmd/pmd_userdocs_cpd.html
https://opendocs.alipay.com/rules/0a9d84
https://developer.apple.com/in-app-purchase/
https://developer.apple.com/in-app-purchase/
https://smartprogram.baidu.com/docs/operations/specification/
https://smartprogram.baidu.com/docs/operations/specification/
https://github.com/wala/WALA
https://github.com/wala/WALA
https://www.cocos.com/en/post/oppo-vivo-games-of-the-year-announced-cocos-developers-win-big
https://www.cocos.com/en/post/oppo-vivo-games-of-the-year-announced-cocos-developers-win-big
https://www.cocos.com/en/post/oppo-vivo-games-of-the-year-announced-cocos-developers-win-big
https://www.cocos.com/en/post/b9cf16c6bc32c1f73bd7a762c6dc43e0
https://www.cocos.com/en/post/b9cf16c6bc32c1f73bd7a762c6dc43e0
https://www.cocos.com/en/creator
https://www.ftc.gov/business-guidance/advertising-marketing
https://www.ftc.gov/business-guidance/advertising-marketing
https://github.com/cwi-swat/javascript-call-graph
https://github.com/cwi-swat/javascript-call-graph

[17] WeChat Developers. Game engine best practices for
wechat mini games. https://developers.weixin.qq.com
/minigame/dev/guide/best-practice/game-engine.html,
2024.

[18] Weixin Developers. Weixin mini program code compi-
lation. https://developers.weixin.qq.com/miniprogram
/dev/devtools/codecompile.html, 2024.

[19] Douyin Open Platform. Mini game operation norms,
2024. URL https://developer.open-douyin.com/docs/r
esource/zh-CN/mini-game/operation1/norms/norms#1
67418a1.

[20] Facebook. Facebook instant-games docs. https://www.
facebook.com/fbgaminghome/developers/instant-gam
es, 2024.

[21] Facebook Gaming. Changes to the instant games plat-
form, 2020. URL https://www.facebook.com/fbgamin
ghome/blog/changes-to-the-instant-games-platform/.

[22] Russian Federation. Federal law "on advertising" no.
38-fz of march 13, 2006, 2025. URL https://www.cons
ultant.ru/document/cons_doc_LAW_58968/f67f81c5
7fdcdacc2643d19d59369f7e185e1156/.

[23] S. Fink and J. Dolby. WALA–The TJ Watson Libraries
for Analysis, 2012. URL https://github.com/wala/WA
LA.

[24] Game Publishing Committee (GPC) of the China Audio-
Video and Digital Publishing Association and Gamma
Data (CNG). China game industry report 2024 (official
release), 2025. URL https://www.cgigc.com.cn/details
.html?id=08dd2ada-5934-4680-892e-63760092eef9&
tp=news.

[25] GitHub. CodeQL, 2023. URL https://codeql.github.co
m/.

[26] Google LLC. Google play’s billing system, 2025. URL
https://developer.android.com/google/play/billing.

[27] Ariya Hidayat. Esprima: Ecmascript parsing infras-
tructure for multi-purpose analysis, 2024. URL https:
//esprima.org/.

[28] Md Shahrear Iqbal, Md Zulkernine, Fehmi Jaafar, and
Yuan Gu. Fcfraud: Fighting click-fraud from the user
side. In 2016 IEEE 17th International Symposium on
High Assurance Systems Engineering (HASE), pages
157–164. IEEE, 2016.

[29] Md Shihabul Islam, Bo Dong, Swarup Chandra, Latifur
Khan, and Bhavani Thuraisingham. Gci: A gpu-based
transfer learning approach for detecting cheats of com-
puter game. IEEE Transactions on Dependable and
Secure Computing, 19(2):804–816, 2020.

[30] Ah Reum Kang, Huy Kang Kim, and Jiyoung Woo.
Chatting pattern based game bot detection: do they talk
like us? KSII Transactions on Internet and Information
Systems (TIIS), 6(11):2866–2879, 2012.

[31] Kuaishou Open Platform. Mini game ad authorization
specification, 2024. URL https://open.kuaishou.com/mi
niGameDocs/operation/specification/ad-auth.html.

[32] Mathias Rud Laursen, Wenyuan Xu, and Anders Møller.
Reducing static analysis unsoundness with approximate
interpretation. Proceedings of the ACM on Program-
ming Languages (PACMPL), 4(PLDI):194:1–194:24,
2024.

[33] Layabox Technology Co., Ltd. Layaair: Open-source
2d/3d engine for high-performance mini-games, 2023.
URL https://layaair.com/.

[34] Wei Li, Borui Yang, Hangyu Ye, Liyao Xiang, Qingxiao
Tao, Xinbing Wang, and Chenghu Zhou. Minitracker:
Large-scale sensitive information tracking in mini apps.
IEEE Transactions on Dependable and Secure Comput-
ing, 2023.

[35] Wenbin Li, Xiaokai Chu, Yueyang Su, Di Yao, Shiwei
Zhao, Runze Wu, Shize Zhang, Jianrong Tao, Hao Deng,
and Jingping Bi. Fingformer: Contrastive graph-based
finger operation transformer for unsupervised mobile
game bot detection. In Proceedings of the ACM Web
Conference 2022, pages 3367–3375, 2022.

[36] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu.
{DECAF}: Detecting and characterizing ad fraud in
mobile apps. In 11th USENIX symposium on networked
systems design and implementation (NSDI 14), pages
57–70, 2014.

[37] Guannan Liu, Daiping Liu, Shuai Hao, Xing Gao, Kun
Sun, and Haining Wang. Ready raider one: Exploring
the misuse of cloud gaming services. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 1993–2007, 2022.

[38] Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng
Dong, Yao Guo, Liu Wang, Tegawendé Bissyandé, and
Jacques Klein. Maddroid: Characterizing and detecting
devious ad contents for android apps. In Proceedings of
The Web Conference 2020, pages 1715–1726, 2020.

[39] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing
Liao, XiaoFeng Wang, and Xueqiang Wang. Demysti-
fying resource management risks in emerging mobile
app-in-app ecosystems. In Proceedings of the 2020
ACM SIGSAC conference on computer and communica-
tions Security, pages 569–585, 2020.

https://developers.weixin.qq.com/minigame/dev/guide/best-practice/game-engine.html
https://developers.weixin.qq.com/minigame/dev/guide/best-practice/game-engine.html
https://developers.weixin.qq.com/miniprogram/dev/devtools/codecompile.html
https://developers.weixin.qq.com/miniprogram/dev/devtools/codecompile.html
https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/operation1/norms/norms#167418a1
https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/operation1/norms/norms#167418a1
https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/operation1/norms/norms#167418a1
https://www.facebook.com/fbgaminghome/developers/instant-games
https://www.facebook.com/fbgaminghome/developers/instant-games
https://www.facebook.com/fbgaminghome/developers/instant-games
https://www.facebook.com/fbgaminghome/blog/changes-to-the-instant-games-platform/
https://www.facebook.com/fbgaminghome/blog/changes-to-the-instant-games-platform/
https://www.consultant.ru/document/cons_doc_LAW_58968/f67f81c57fdcdacc2643d19d59369f7e185e1156/
https://www.consultant.ru/document/cons_doc_LAW_58968/f67f81c57fdcdacc2643d19d59369f7e185e1156/
https://www.consultant.ru/document/cons_doc_LAW_58968/f67f81c57fdcdacc2643d19d59369f7e185e1156/
https://github.com/wala/WALA
https://github.com/wala/WALA
https://www.cgigc.com.cn/details.html?id=08dd2ada-5934-4680-892e-63760092eef9&tp=news
https://www.cgigc.com.cn/details.html?id=08dd2ada-5934-4680-892e-63760092eef9&tp=news
https://www.cgigc.com.cn/details.html?id=08dd2ada-5934-4680-892e-63760092eef9&tp=news
https://codeql.github.com/
https://codeql.github.com/
https://developer.android.com/google/play/billing
https://esprima.org/
https://esprima.org/
https://open.kuaishou.com/miniGameDocs/operation/specification/ad-auth.html
https://open.kuaishou.com/miniGameDocs/operation/specification/ad-auth.html
https://layaair.com/

[40] Finlay Macklon, Mohammad Reza Taesiri, Markos Vig-
giato, Stefan Antoszko, Natalia Romanova, Dale Paas,
and Cor-Paul Bezemer. Automatically detecting visual
bugs in html5 canvas games. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 1–11, 2022.

[41] S. M. Hasan Mansur, Sabiha Salma, Damilola
Awofisayo, and Kevin Moran. Aidui: Toward auto-
mated recognition of dark patterns in user interfaces.
In Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering (ICSE), 2023. doi:
10.1109/ICSE48619.2023.00166.

[42] Arunesh Mathur, Gunes Acar, Michael J. Friedman,
Elena Lucherini, Jonathan Mayer, Marshini Chetty, and
Arvind Narayanan. Dark patterns at scale: Findings
from a crawl of 11k shopping websites. Proceedings of
the ACM on Human-Computer Interaction, 3(CSCW):
1–32, 2019.

[43] Shi Meng, Liu Wang, Shenao Wang, Kailong Wang,
Xusheng Xiao, Guangdong Bai, and Haoyu Wang.
Wemint: Tainting sensitive data leaks in wechat mini-
programs. In 2023 38th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 1403–1415. IEEE, 2023.

[44] Meta Platforms, Inc. Audience Network Interstitial Ads,
2023. URL https://developers.facebook.com/docs/audie
nce-network/guides/ad-formats/interstitial.

[45] Meta Platforms, Inc. Instant games playbook. https:
//developers.facebook.com/resources/IG-Playbook-E
N.pdf, 2024.

[46] People Republic of China. Advertising law of the peo-
ple’s republic of china, 2021. URL https://www.samr.g
ov.cn/zw/zfxxgk/fdzdgknr/fgs/art/2023/art_5474cf75
173c45d6a0379730fb4e8d97.html.

[47] Douyin Open Platform. Interstitial ad notice, 2025. URL
https://developer.open-douyin.com/docs/resource/zh
-CN/mini-game/develop/api/javascript-api/ads/interstit
ial-ad/interstitial-ad-notice.

[48] SWC Project. swc: A super-fast compiler written in rust,
2024. URL https://github.com/swc-project/swc.

[49] Quickgame. Quickgames docs. https://minigame.vivo.
com.cn/documents, 2024.

[50] Yizhe Shi, Guangliang Yang, Zhemin Yang, Yifan Yang,
Min Yang, Kangwei Zhong, and Xiaohan Zhang. The
skeleton keys: A large scale analysis of credential leak-
age in mini-apps. In Proceedings of the 32nd Network
and Distributed Systems Security Symposium (NDSS),
2025.

[51] Mohit Singhal et al. Sok: Content moderation in social
media, from guidelines to enforcement and research
to practice. In 2023 IEEE European Symposium on
Security and Privacy (EuroS&P), 2023.

[52] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What
mobile ads know about mobile users. In NDSS, 2016.

[53] Kevin Springborn and Paul Barford. Impression fraud
in on-line advertising via {Pay-Per-View} networks. In
22nd USENIX Security Symposium (USENIX Security
13), pages 211–226, 2013.

[54] Yueyang Su, Di Yao, Xiaokai Chu, Wenbin Li, Jingping
Bi, Shiwei Zhao, Runze Wu, Shize Zhang, Jianrong Tao,
and Hao Deng. Few-shot learning for trajectory-based
mobile game cheating detection. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pages 3941–3949, 2022.

[55] Suibin Sun, Le Yu, Xiaokuan Zhang, Minhui Xue, Ren
Zhou, Haojin Zhu, Shuang Hao, and Xiaodong Lin. Un-
derstanding and detecting mobile ad fraud through the
lens of invalid traffic. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, pages 287–303, 2021.

[56] Jianrong Tao, Jiarong Xu, Linxia Gong, Yifu Li,
Changjie Fan, and Zhou Zhao. Nguard: A game bot
detection framework for netease mmorpgs. In Proceed-
ings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 811–820,
2018.

[57] Jianrong Tao, Jianshi Lin, Shize Zhang, Sha Zhao,
Runze Wu, Changjie Fan, and Peng Cui. Mvan: Multi-
view attention networks for real money trading detec-
tion in online games. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discov-
ery & data mining, pages 2536–2546, 2019.

[58] TechNode. Wechat mini-program games hit 500 million
monthly users, 2025. URL https://technode.com/2025/
06/26/wechat-mini-program-games-hit-500-million
-monthly-users-pc-usage-surges/.

[59] Tencent. Ads guidelines of weixin minigames. https:
//wxa.wxs.qq.com/wxadtouch/upload/t2/533fyowz_d7
c30427.pdf.

[60] Tencent. Weixin mini games docs. https://developers.w
eixin.qq.com/minigame/dev/guide, 2024.

[61] Tencent. Weixin mini game banner ad api documenta-
tion. https://developers.weixin.qq.com/minigame/en/d
ev/guide/open-ability/ad/banner-ad.html, 2024.

https://developers.facebook.com/docs/audience-network/guides/ad-formats/interstitial
https://developers.facebook.com/docs/audience-network/guides/ad-formats/interstitial
https://developers.facebook.com/resources/IG-Playbook-EN.pdf
https://developers.facebook.com/resources/IG-Playbook-EN.pdf
https://developers.facebook.com/resources/IG-Playbook-EN.pdf
https://www.samr.gov.cn/zw/zfxxgk/fdzdgknr/fgs/art/2023/art_5474cf75173c45d6a0379730fb4e8d97.html
https://www.samr.gov.cn/zw/zfxxgk/fdzdgknr/fgs/art/2023/art_5474cf75173c45d6a0379730fb4e8d97.html
https://www.samr.gov.cn/zw/zfxxgk/fdzdgknr/fgs/art/2023/art_5474cf75173c45d6a0379730fb4e8d97.html
https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/develop/api/javascript-api/ads/interstitial-ad/interstitial-ad-notice
https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/develop/api/javascript-api/ads/interstitial-ad/interstitial-ad-notice
https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/develop/api/javascript-api/ads/interstitial-ad/interstitial-ad-notice
https://github.com/swc-project/swc
https://minigame.vivo.com.cn/documents
https://minigame.vivo.com.cn/documents
https://technode.com/2025/06/26/wechat-mini-program-games-hit-500-million-monthly-users-pc-usage-surges/
https://technode.com/2025/06/26/wechat-mini-program-games-hit-500-million-monthly-users-pc-usage-surges/
https://technode.com/2025/06/26/wechat-mini-program-games-hit-500-million-monthly-users-pc-usage-surges/
https://wxa.wxs.qq.com/wxadtouch/upload/t2/533fyowz_d7c30427.pdf
https://wxa.wxs.qq.com/wxadtouch/upload/t2/533fyowz_d7c30427.pdf
https://wxa.wxs.qq.com/wxadtouch/upload/t2/533fyowz_d7c30427.pdf
https://developers.weixin.qq.com/minigame/dev/guide
https://developers.weixin.qq.com/minigame/dev/guide
https://developers.weixin.qq.com/minigame/en/dev/guide/open-ability/ad/banner-ad.html
https://developers.weixin.qq.com/minigame/en/dev/guide/open-ability/ad/banner-ad.html

[62] UC Mini Game Platform. Mini game operating specifi-
cations, 2024. URL https://minigame.uc.cn/design/oper
ating#QA4j4.

[63] European Union. Article 26 — digital services act
(advertising on online platforms), 2022. URL https:
//www.eu-digital-services-act.com/Digital_Services_
Act_Article_26.html.

[64] VIVO. Guidelines for app verification on the developers
platform. https://developer.vivo.com/doc/detail?id=68.

[65] Vivo. Vivo mini game interstitial ad api documentation.
https://minigame.vivo.com.cn/documents/#/api/ad/cu
stom-ad, 2024.

[66] VK Developers. Mini apps rules – advertising, 2024.
URL https://dev.vk.com/en/mini-apps-rules#5.1.%20
Advertising.

[67] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and
Zhiqiang Lin. Taintmini: Detecting flow of sensitive
data in mini-programs with static taint analysis. In 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 932–944. IEEE, 2023.

[68] Chao Wang, Yue Zhang, and Zhiqiang Lin. One size
does not fit all: Uncovering and exploiting cross plat-
form discrepant {APIs} in {WeChat}. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 6629–
6646, 2023.

[69] Chao Wang, Yue Zhang, and Zhiqiang Lin. Uncovering
and exploiting hidden apis in mobile super apps. In
Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pages 2471–
2485, 2023.

[70] WeChat Ads. Mini game publisher operation policy,
2024. URL https://ad.weixin.qq.com/docs/239.

[71] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. Cross
miniapp request forgery: Root causes, attacks, and vul-
nerability detection. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, pages 3079–3092, 2022.

[72] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. Under-
standing miniapp malware: Identification, dissection,
and characterization. In Proceedings 2025 Network and
Distributed System Security Symposium. San Diego, CA,
USA, 2025.

[73] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xi-
aohan Zhang, Yanjun Chen, Yuan Zhang, Guangliang
Yang, and Min Yang. Identity confusion in {WebView-
based} mobile app-in-app ecosystems. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1597–
1613, 2022.

[74] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang,
Chaoshun Zuo, and Zhiqiang Lin. A measurement study
of wechat mini-apps. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 5(2):1–25,
2021.

[75] Zhen Zhang, Yu Feng, Michael D Ernst, Sebastian Porst,
and Isil Dillig. Checking conformance of applications
against gui policies. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pages 95–106, 2021.

[76] Sha Zhao, Junwei Fang, Shiwei Zhao, Runze Wu, Jian-
rong Tao, Shijian Li, and Gang Pan. T-detector: A trajec-
tory based pre-trained model for game bot detection in
mmorpgs. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE), pages 992–1003. IEEE,
2022.

[77] Chaoshun Zuo and Zhiqiang Lin. Playing without pay-
ing: Detecting vulnerable payment verification in native
binaries of unity mobile games. In 31st USENIX Se-
curity Symposium (USENIX Security 22), pages 3093–
3110, 2022.

A Policy Annotation Process

Our policy annotation process began by retrieving all official
policy documents [2, 4, 19, 31, 44, 59, 62, 64, 66]. We then
searched for clauses containing the keyword “ad” (and its
variants such as advertisement or advertising). Each clause
was independently reviewed by two authors and labeled if it
explicitly described developer obligations or restrictions on
advertising behavior.

Next, we grouped semantically similar restrictions into can-
didate clusters (e.g., statements prohibiting mid-game pop-
ups or auto-triggered interstitials were grouped together). We
then organized these clusters according to the primary user-
facing consequence of the aggressive ad, which resulted in
four broad categories: Interruptive Advertising, Hijacking
Advertising, Unstoppable Advertising, and Deceptive Adver-
tising. Each category further encompasses several concrete
behaviors, yielding a total of 14 behaviors in our taxonomy.

B Implementation Details of Stage III

B.1 Multiple-Conditions Inference Rules
Here, we summarize the major inference logic for the four
aggressive advertising categories.
Interruptive Advertising. An Ad-behavior is inferred as in-
terruptive advertising when its User Event is a scene lifecycle
transition (e.g., onEnable, onLoad), and its Advertisement

https://minigame.uc.cn/design/operating#QA4j4
https://minigame.uc.cn/design/operating#QA4j4
https://www.eu-digital-services-act.com/Digital_Services_Act_Article_26.html
https://www.eu-digital-services-act.com/Digital_Services_Act_Article_26.html
https://www.eu-digital-services-act.com/Digital_Services_Act_Article_26.html
https://developer.vivo.com/doc/detail?id=68
https://minigame.vivo.com.cn/documents/#/api/ad/custom-ad
https://minigame.vivo.com.cn/documents/#/api/ad/custom-ad
https://dev.vk.com/en/mini-apps-rules#5.1.%20Advertising
https://dev.vk.com/en/mini-apps-rules#5.1.%20Advertising
https://ad.weixin.qq.com/docs/239

Type is an interstitial. These advertisements occur before the
user initiates any action and disrupt normal gameplay. An Ad-
behavior is also inferred as interruptive advertising when the
User Event is activated through object collision, because such
unexpected pop-ups interrupt the user’s intended interactions.
Hijacking Advertising. An Ad-behavior is inferred as hijack-
ing advertising when its User Event is a button clicking, its
User Interface Semantic contains functional gameplay key-
words, and its Advertisement Type is interstitial. Ads triggered
by screen touching are also inferred as hijacking, as they
intercept any touch interaction regardless of user intent. Fur-
thermore, if the extracted ad parameters show that can_close
is false, which prevents users from dismissing the ad, the
Ad-behavior is inferred as hijacking.
Unstoppable Advertising. An Ad-behavior is inferred as un-
stoppable advertising when the value of Triggering Condition
shows repeated activation at high frequency. If the interval
between consecutive triggers is shorter than 30 seconds, we
treat it as unstoppable advertising. We also detect an unstop-
pable pattern where closing a banner is followed by a timer,
and the timer re-displays the same banner after a short delay.
As shown in Call Path, this forms a loop that unstoppably
forces the advertisement back into view.
Deceptive Advertising. An Ad-behavior is inferred as decep-
tive advertising when its User Event is a button clicking and
its User Interface Semantic induces user interaction by imply-
ing a non-advertising reward, while the click directly triggers
an advertisement. This semantic–behavioral mismatch be-
tween the implied action and the actual advertising outcome
defines deceptive advertising. For example, if users click a
button labeled “Click to get rewards” or “Get double coins”,
an advertisement is shown. The button disguises an ad click
as a reward action, which constitutes deceptive advertising.

B.2 Inducive Text Classifier
For inducive-text detection, we use a binary classifier built
on a fine-tuned XLM-RoBERTa-base model (278M parame-
ters, 201 tensors) to identify bilingual inducive expressions in
mini-game UI elements. Its multilingual pretraining enables
a unified representation of English and Chinese text, avoid-
ing separate monolingual models and improving robustness
to mixed-language interfaces. We distilled representative in-
ducive patterns from real mini-games and augmented them
with LLM-generated phrases under custom part-of-speech
rules. The final dataset contains 34,479 positive and 20,879
negative samples. With an 8:1:1 train–validation–test split, the
classifier achieved 99.8% precision on the test set, confirming
its effectiveness in supporting Stage III.

C Call Graph Tool Selection

We employed static analysis tools to generate the call graph.
We evaluated four widely used JavaScript call graph construc-

tion frameworks, namely WALA[23], CodeQL[25], ACG[16],
and Jelly[32], and manually verified their precision. As
shown in Table 5, all of these tools are able to produce Ad-
behaviors, yet their performance characteristics differ sub-
stantially. WALA achieved the highest accuracy, Jelly demon-
strated the shortest analysis time, and ACG identified the
largest number of Ad-behaviors due to its field-based static
analysis. However, ACG also produced a significant num-
ber of false positives, as it fails to differentiate identically
named properties across distinct objects, thereby introducing
numerous incorrect call edges. Although CodeQL exhibited
reasonable accuracy, its database-centric approach to code
analysis is not well-suited for global data flow analysis in
mini-games, as it incurs considerable performance overhead.
Based on these findings, we ultimately selected WALA as the
call graph construction tool in MAAD, since it provides sound,
propagation-based analysis for JavaScript programs.

Table 5: The Performance Comparison of CG Tools

CG Tool
Runtime Ad-behaviors

Avg. (s) Me. (s) Avg. (#) Prec. (%)

WALA 212.90 50.22 295.84 94.57%
CodeQL 209.75 72.58 68.47 75.59%
ACG 89.13 12.89 2,941.65 37.33%
Jelly 55.77 6.01 576.70 67.54%

D Large-scale Deployment

To evaluate the practicality of MAAD in realistic scenarios,
we deployed it on a large-scale real-world dataset from an
anonymous cooperating platform containing Cocos mini-
game packages submitted for pre-release review in March
2024. We first excluded corrupted or invalid files, leaving
1,613 Cocos mini-games. Under the same experimental set-
ting with 8 threads, MAAD completed the analysis of all mini-
games in 16.3 hours.

From this deployment, MAAD successfully identified ag-
gressive advertising behaviors in 877 mini-games (54.37%).
Notably, interrupting pop-ups was the most prevalent type,
appearing in 35.17% of all mini-games, which highlights
the widespread adoption of intrusive advertising strategies.
Among those mini-games, the median number of aggressive
Ad-behavior is 52, with more than 25% holding at least 100
aggressive Ad-behaviors. These findings not only provide a
concrete picture of the current mini-game advertising ecosys-
tem but also demonstrate that MAAD is both efficient and
effective in supporting platform-scale auditing tasks, thereby
validating its real-world applicability.

	Introduction
	Background
	Advertisement in Mini-game
	Threat Model
	Platform Policies on Advertising
	Developer Capabilities in Integration

	Detecting Aggressive Advertising
	Challenges & Insights
	Design Architecture
	Stage I: Mini-game Code Pruning
	Stage II: Ad-Behavior Extraction
	Stage III: Aggressiveness Detection

	Evaluation
	Dataset & Implementation
	Effectiveness Evaluation
	Efficiency Evaluation
	Large-Scale Deployment

	Real-World Measurement
	Aggressive Advertising Landscape
	Profiling Aggressive-Ad Mini-games
	Behavioral Patterns of Aggressive-Ad
	Reporting and Feedback

	Discussion
	Related Work
	Conclusion
	Policy Annotation Process
	Implementation Details of Stage III
	Multiple-Conditions Inference Rules
	Inducive Text Classifier

	Call Graph Tool Selection
	Large-scale Deployment

