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Abstract
LLM-based agents have recently attracted significant atten-
tion. By leveraging the semantic understanding capabili-
ties of large language models (LLMs), these agents can au-
tonomously perform complex tasks according to user requests,
such as downloading files and summarizing content. How-
ever, the lack of comprehensive resource governance renders
them susceptible to abuse, potentially leading to resource
exhaustion and denial-of-service (DoS) conditions.

In this work, we present the first systematic security study
of resource management in LLM-based agents. We identify
three representative patterns of resource lifecycle manage-
ment, each of which enables distinct avenues for DoS ex-
ploitation. Building on these insights, we propose AgentDoS,
a novel directed grey-box fuzzing framework designed to
detect DoS vulnerabilities arising from resource exhaustion.
AgentDoS first analyzes the resource lifecycle within the agent
and then leverages an LLM to generate functionality-specific
seed prompts in natural language that drive the agent toward
excessive resource consumption. We evaluated AgentDoS on
20 widely used open-source LLM-based agents and discov-
ered 36 zero-day vulnerabilities affecting 16 agents, 15 of
which have over 10,000 stars on GitHub. To date, 15 CVE
IDs have been assigned for these vulnerabilities.

1 Introduction

LLM-based agents have recently attracted significant atten-
tion. Leveraging the powerful semantic understanding capabil-
ities of large language models (LLMs), these agents can inter-
pret natural language instructions and autonomously perform
complex tasks, such as downloading files and summarizing
content, in real-world scenarios [72, 74]. Mainstream plat-
forms, such as OpenAI GPTs and Coze, currently host a wide
variety of agents [10, 15], attracting millions of users [84].

Unlike conventional software systems with well-defined
business logic, LLM-based agents autonomously execute com-
plex, resource-intensive tasks from natural language instruc-
tions. However, these characteristics also make them highly

vulnerable to Denial-of-Service (DoS) caused by resource
exhaustion. To investigate the emerging resource manage-
ment practices in agents and their associated risks, we present
the first study of resource management in LLM-based agents.
Our observations reveal three representative resource lifecycle
patterns. First, during single-task execution, agents are often
permitted to consume substantial resources to preserve auton-
omy in handling diverse operations. Although these resources
are released upon task completion, a single malicious prompt
(e.g., loading of a large file) can immediately deplete them.
Second, while some developers impose limits on resources
consumed within a single turn, certain resources persist across
multiple turns to maintain conversational coherence. These
resources may be cleared at the end of a session, making
their lifecycle coincide with the chat session. An attacker can
repeatedly interact within the same session, progressively ac-
cumulating retained data and eventually exhausting resources.
Finally, some resources are never released once allocated.
Attackers need only repeatedly interact with the agent to grad-
ually consume all resources and induce a DoS condition.

Currently, fuzzing techniques have been widely applied
to detecting DoS vulnerabilities [34, 36, 37, 47, 81], valued
for their high precision and ability to generate proofs of con-
cept (PoCs) for vulnerability verification. Specifically, fuzzers
generate initial seeds that conform to the target application’s
input format and then mutate them (e.g., via bit-flip [1] strate-
gies) until resource exhaustion is triggered. However, DoS in
agents requires semantically precise prompts that both acti-
vate specific functionality (e.g., a download command) and
induce heavy resource usage (e.g., retrieving a 50 GB file).
Existing fuzzers cannot operate at this semantic level [49].
While AgentFuzz [49] makes the first attempt to generate
prompts with functional semantics, its focus is limited to
taint-style vulnerabilities, remaining ineffective in driving
excessive resource consumption. Moreover, prior work has
not considered the resource lifecycle in agents, specifically,
whether resources must be exhausted within a single interac-
tion or accumulated over multiple turns within the same chat
session, resulting in potential false negatives.



To this end, we are motivated to develop a resource-
lifecycle-based approach for detecting DoS vulnerabilities
in LLM-based agents. The basic idea is to first identify data-
storing instructions and determine their corresponding re-
source lifecycle, and then iteratively refine prompts and dis-
patch prompts to the agent using lifecycle-aware strategies
(e.g., issuing them in a new chat session or within the same
session) until a DoS condition is triggered. However, realizing
this detection approach is non-trivial, given the complexity of
agents. We summarize the key challenges as follows:

• Challenge I: How to Identify the Lifecycle of Resources?
Agents often consume substantial resources, yet their man-
agement is rarely documented in detail, making it difficult
to determine whether a given resource is released after a
single chat or retained across multiple interactions as part
of the conversational context.

• Challenge II: How to Generate Prompts that Effectively
Trigger Resource Abuse? Triggering DoS vulnerabilities
in LLM-based agents requires semantically precise prompts
that not only activate specific functionalities (e.g., issuing a
download command) but also induce substantial resource
consumption (e.g., retrieving a 50 GB file). However, ex-
isting approaches fall short of generating such prompts,
making it difficult to expose DoS vulnerabilities in agents.

In this paper, we propose a directed grey-box fuzzing
(DGF) [33]-based approach, named AgentDoS. Our design
is motivated by several key insights that directly address the
aforementioned challenges. First, the implementation logic of
agents provides valuable cues for distinguishing different re-
source lifecycles. Specifically, if a resource is allocated solely
for handling a single prompt and is neither referenced by other
variables nor retained in subsequent logic, its lifecycle is lim-
ited to that individual interaction. In contrast, certain resources
may persist beyond a single turn. Second, agents rely on var-
ious components (e.g., tools) to process actions, and their
functionalities are often further detailed in the system prompt.
The class and method names, together with the source code
of these components and the system prompt, reveal both their
functional purpose and the semantics of resource-intensive
operations. Moreover, high-quality prompts typically align
with these semantics while simultaneously driving substan-
tial resource consumption. Such information can therefore
guide the generation of prompts that both activate specific
functionalities and induce excessive resource usage.

Based on these insights, we design AgentDoS with two
main phases. In the first stage, AgentDoS employs static
analysis to locate resource-consuming operations and deter-
mine their corresponding lifecycles according to the agent’s
execution logic. It then conducts intra-procedural analysis
to exclude operations unaffected by user input or strictly
constrained, retaining only exploitable candidates. For each,
AgentDoS extracts call chains and relevant code snippets for
downstream analysis. In the second phase, AgentDoS parses

the agent’s system prompt and, together with the information
extracted in the previous phase, leverages an LLM to generate
functionality-specific seed prompts. Each seed is then exe-
cuted and evaluated based on its semantic alignment with the
target functionality as well as the resources it consumes. Two
mutators then refine high-quality seeds from complementary
perspectives, i.e., functional semantics and resource-intensive
behavior, and dispatch them with lifecycle-aware strategies.
Finally, AgentDoS monitors agent responsiveness to deter-
mine whether a DoS vulnerability is triggered.

We evaluated AgentDoS on 20 widely used open-source
agent applications that provide web services, which are partic-
ularly susceptible to attacks due to their exposure and the po-
tential impact of exploitation. As a result, AgentDoS achieved
a resource lifecycle identification accuracy of 95.2% and
successfully uncovered 36 zero-day DoS vulnerabilities, 33
of which had not been detected by existing state-of-the-art
approaches [49], achieving 100% precision and 94.7% re-
call. These vulnerabilities affect 16 open-source agents, 15
of which have received more than 10k stars on GitHub. We
promptly reported all findings to the respective developers.
To date, 15 of them have been assigned CVE IDs.

We summarize the contributions of this work as follows:

• To the best of our knowledge, we present the first system-
atic security study of resource management in LLM-based
agents, uncovering the root causes of resource exhaustion
vulnerabilities in agent system design and implementation.

• We design and implement a novel detection tool, AgentDoS,
which effectively identifies DoS vulnerabilities caused by
resource abusing in real-world agent applications.

• We evaluate AgentDoS on 20 widely used LLM-based agent
applications, where it successfully discovers 36 zero-day
vulnerabilities. As of now, these vulnerabilities have been
assigned 15 CVE IDs.

2 Problem Statement

In this section, we first provide an overview of LLM-based
agents and introduce a taxonomy of resource lifecycles within
agent systems (in §2.1). We then present a real-world DoS
vulnerability caused by resource abuse and present why exist-
ing works are ineffective (in §2.2). Finally, we delve into the
root causes of resource-abusing vulnerabilities (in §2.3) and
introduce our threat model (in §2.4).

2.1 Background
First, we outline the background of LLM-based agents and
their resource management strategies.
LLM-based Agent. The advancement of LLMs has acceler-
ated the development of sophisticated LLM-based agents [3,
11, 18, 72]. These agents leverage the natural language un-
derstanding capabilities of LLMs to interpret user prompts
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Figure 1: Simplified workflow of LLM-based agents.

and autonomously perform complex tasks that exceed the
capabilities of traditional LLMs, such as web browsing, by
integrating a suite of components (e.g., external tools).

Figure 1 illustrates a simplified workflow for a typical agent.
(1) Initially, the user initiates a task request within a chat ses-
sion, for instance, "help me download example.com/file." (2)
The agent then augments this prompt with a predefined system
prompt, which instructs the LLM on which components can
be invoked and provides a brief description of them. (3) The
combined prompt is sent to the LLM. (4) The agent parses the
LLM’s response to determine the planned action and executes
it using the relevant component (e.g., a download tool). (5)
Finally, the agent delivers the outcome of the executed action
to the user. (6) The user may then continue in the same ses-
sion to process previous outputs (e.g., summarizing the file)
or start a new session for a different task.
Lifecycle of Resources in Agents. During execution, LLM-
based agents frequently consume substantial system resources
(e.g., memory, disk space). If these resources are not prop-
erly released after use, they can accumulate over time, lead-
ing to redundant artifacts and eventual resource exhaustion.
However, to the best of our knowledge, there is currently
no systematic analysis of resource management strategies in
agent systems. To bridge this gap, we take an initial step to-
ward understanding how LLM-based agents manage system
resources, with a particular focus on the timing of resource
release. Specifically, we selected 20 representative agent appli-
cations from popular open-source repositories on GitHub [14]
and manually analyzed their source code and documentation
(detailed in §6.2). Our investigation reveals that while many
resources are promptly released after a single interaction, oth-
ers persist beyond the scope of a single turn. In particular, we
classify resource lifecycles in agents into three types based
on their release timing:

1. Short-lived resources are allocated during a single-turn in-
teraction and are subsequently released, either by garbage
collection [13] or explicitly by the agent, once the inter-
action completes. For this type of resource, a malicious
attacker must exhaust all resources within a single prompt.

2. Long-lived resources refer to resources that persist across
multiple turns within the same chat session and are re-
leased only when the session terminates (e.g., upon reach-

ing a predefined interaction limit). For such resources, an
attacker can repeatedly issue interactions within the same
session to progressively accumulate consumption until
exhaustion.

3. Full-lifecycle resources refer to data that, once allocated,
are never released and remain accessible for the entire
lifespan of the agent system. For this type of resource, an
attacker can exhaust resources through repeated interac-
tions across multiple sessions.

2.2 Motivation Example

Then, we introduce the resource-abusing vulnerabilities
caused by improper resource management and discuss why
existing techniques fail to detect them in LLM-based agents.

Tool = ["Search": Search(), "Download": Download(), 
"Calculate": Calculate()]
SystemPrompt = "... You can use following tool:
1. Download tool,  the input of this tool is an url ..."
CurrentChatSession  = ChatSession()

@route.post("/chat")
def chat(user_prompt):
    if CurrentChatSession.chat_times > 10:
        return "Chat Times Limited!"
    response = CurrentChatSession.chat(user_prompt)

Class ChatSession():
    def chat(self, prompt):

response= llm.invoke(SystemPrompt, prompt)
# Update session context

    self.memory.append((user_prompt, response))
self.chat_times += 1
# tool = Download()

    tool = Tool[response["tool"]]
    # tool.run("http://example.com/file","/root/session1")
    tool.run(response["payload"], self.workspace)
   
Class Download(Tool):
    def run(url, workspace):
        file_name = url.split("/")[-1]
        response = requests.get(url, timeout = 30)
        with open(workspace + file_name, "wb") as f:
             f.write(response.content) 
        # Downloaded files reside permanently on disk

@route.post("/create")
def create_new_session():
    CurrentChatSession =  ChatSession()
    # Clear previous session information through GC

1.

2.

3.

4.
5.
6.
7.
8.

9.
10.
11.

12.
13.

14.

15.

16.
17.
18.
19.
20.
21.

22.
23.
24.

① User input

② Chat LLM & Get response

③ Get & Invoke tool

Attacker

Assist me in completing the full 
download procedure for the resource 

located at example.com/file. Agent

Chat 1000 times

Each time select a 
new chat session

④ Download & Write disk

Figure 2: A real-world DoS vulnerability example from a
popular open-source agent.

A Real-World Example. Figure 2 illustrates a simplified code
snippet of a zero-day vulnerability we discovered (CVE-2025-
4**90, anonymized for ethical reasons) on a mainstream open-
source agent platform. Specifically, this agent is designed
to autonomously download arbitrary files for tasks such as
literature reviews. However, due to improper management of
downloaded resources, attackers can exploit this feature to



launch DoS attacks by exhausting all disk space, rendering
the agent’s functionality unavailable.
Exploitation of Resource Abusing Vulnerability. To ex-
ploit this vulnerability, the attacker performs the following
steps: ❶ The attacker issues a crafted prompt to the agent
via its single-chat web API (lines 4–5). ❷ The agent for-
wards this prompt to the LLM (line 11), which plans the next
action by selecting a tool from the system prompt. ❸ The
agent parses the LLM’s response and invokes the selected
tool (lines 14–15). In this case, the Download tool with the
parameter example.com/file. ❹ The tool retrieves the file
and stores it locally (lines 19–21). ❺ While the agent enforces
per-session resource limits (e.g., a download timeout at line
23 and a restriction on the number of turns per session at lines
6–7), files generated in previous sessions persist on disk (lines
23–24). An attacker can therefore repeatedly create new ses-
sions (lines 22–23) and replay the above steps, progressively
accumulating files until system resources are exhausted.
Limitations of Existing Detection Methods. Although DoS
vulnerability detection has been extensively studied, we found
that existing techniques are ineffective to identifying the
above vulnerability. First, most existing approaches [45, 64,
69, 78] primarily target CPU exhaustion and thus cannot ad-
dress memory and disk resource exhaustion in agents. Sec-
ond, while a few studies have explored memory exhaus-
tion [36, 47, 48, 81] and memory leaks [34, 37, 65, 71], agent
systems typically rely on customized frameworks rather than
well-defined ecosystems (e.g., beans in Spring Boot) to man-
age resource lifecycles. As a result, existing work provides
insufficient guidance for identifying resource lifecycles within
agents. More importantly, these approaches are unable to gen-
erate semantically valid prompts. Finally, the most relevant
work is AgentFuzz [49], but it focuses exclusively on taint-
style vulnerabilities and fails to induce excessive resource
consumption. As shown in our evaluation (detailed in §6.4),
AgentFuzz can detect only 7.9% of the resource-abusing vul-
nerabilities identified in our benchmark.

2.3 Problem Understanding

To address this gap, we delve into the root causes of resource-
abusing vulnerabilities. We found that the main reasons for
the resource abuse problem in the agent are twofold:

• Mismanaged Resource Lifecycle: Agents typically retain
conversational context across multiple interactions to pre-
serve coherence. Since they autonomously execute tasks
based on user input, developers cannot predict which inter-
mediate resources may be required later. To avoid disrupting
functionality, developers therefore tend to preserve most
intermediate data. For instance, as shown in Figure 2, files
downloaded during a chat session are retained indefinitely
and never deleted. This design flaw allows attackers to craft
prompts that trigger unnecessary allocations and repeated

interactions, causing redundant resources to accumulate
over time and eventually exhausting system resources.

• Lack of Resource Size Limits: A straightforward defense
against resource exhaustion is to restrict the amount of
resources an agent can consume. However, existing size
limits are often incomplete. For instance, many agents pro-
vide a download tool that allows the LLM to fetch arbitrary
files with configurable parameters such as timeout and file
size. An attacker can exploit this functionality by down-
loading files that exceed the remaining disk space, directly
exhausting storage. Moreover, as shown in Figure 2, a 30-
second timeout implicitly caps the size of a single down-
load at approximately 300 MB. Yet, without proper checks
on overall resource availability, an attacker can repeatedly
download smaller files across multiple sessions, bypassing
per-interaction limits and gradually consuming all available
disk space. Conversely, overly strict limits can undermine
the agent’s ability to autonomously complete tasks. For
example, during a literature review task, an agent may fail
to download all necessary documents under restrictive re-
source constraints, preventing task completion.

2.4 Threat Model
In our threat model, we assume that both the agents and their
developers are benign and that the agents’ execution envi-
ronments are not compromised. The adversary is a remote
attacker who can interact with the target agent under nor-
mal usage conditions, such as by issuing prompts through a
publicly accessible web interface. This interaction pattern is
common in mainstream LLM-based agent systems [3, 11, 18].
The attack is executed by sending specially crafted malicious
prompts to the agent. When the agent processes these prompts,
it is induced to consume excessive system resources (e.g.,
memory or disk), ultimately leading to a Denial-of-Service
(DoS) condition.

3 Overall Ideas

In this section, we first discuss the challenges of identify-
ing resource-abusing vulnerabilities in LLM-based agents
and present our key insights (in §3.1). We then provide an
overview of our proposed framework and demonstrate its ap-
plication to the motivating example (in §3.2).

3.1 Challenges & Key Insights
As previously discussed, the resource lifecycle plays a critical
role in shaping the attacker’s exploitation strategy. Specifi-
cally, for resources released after a single turn, an attacker
must maximize consumption within a single prompt. Con-
versely, for resources that persist across multiple turns, an
attacker can incrementally increase consumption over succes-
sive interactions within a session to eventually cause exhaus-
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tion. However, exploiting such vulnerabilities presents two
key challenges stemming from complex resource lifecycles
and the unique inputs of LLM-based agents.
Challenge I: How to Identify the Lifecycle of Resources?
During execution, LLM-based agents interact with various
system resources, such as memory and disk storage. Unlike
traditional web applications, which manage resource lifecy-
cles through well-defined frameworks, agents often rely on
customized agent frameworks that are rarely documented in
detail. As a result, it is difficult to determine whether a spe-
cific resource is released after a single chat (i.e., a short-lived
resource), retained across multiple interactions and released
only when the chat session ends (i.e., a long-lived resource),
or persisted even after the chat session is terminated (i.e., a
full-lifecycle resource).
Key Insight I: Agent Implementation Logic-Driven Life-
cycle Determination. Considering that our resource lifecycle
classification in §2.1 is closely related to the agent’s business
logic, we leverage the agent’s handling of single conversations
and its chat session deletion logic to assist in determining re-
source lifecycles. Specifically, if a resource is allocated only
during a single conversation, is not referenced by other vari-
ables, and is explicitly released in subsequent logic, we clas-
sify it as a short-lived resource. In contrast, certain resources
may persist beyond a single conversation. By inspecting the
deletion logic of chat sessions, we can determine whether
such resources are released when the session ends. If they are
released, they are classified as long-lived resources; otherwise,
we consider them to remain resident in the agent, constituting
full-lifecycle resources.
Challenge II: How to Generate Prompts that Effectively
Trigger Resource Abuse? To expose DoS vulnerabilities in
agents, a prompt must encode precise semantic intent that
both activates the vulnerable component (e.g., issuing a com-
mand such as “Download ...”) and simultaneously drives
excessive resource consumption (e.g., requesting the down-
load of a 50GB file). However, existing DoS detection ap-
proaches [36, 71, 81] primarily rely on low-level mutations
(e.g., bit flips [1]), which cannot capture or manipulate the

high-level semantics required in natural language prompts.
Although AgentFuzz [49] makes a first attempt to generate
prompts with functional semantics, its scope is limited to taint-
style vulnerabilities, and it remains ineffective in inducing
substantial resource consumption.
Key Insight II: LLM-Assisted Resource-Consuming
Prompt Generation. The key insight is that component class
and method names, together with the system prompt and sur-
rounding code, convey both functional intent and the seman-
tics of resource-intensive operations. As shown in Figure 2,
the component name "Download" and its description explic-
itly indicate its functionality, while the enclosing function
suggests that exhausting disk resources requires download-
ing a large file. Moreover, the semantic similarity between
a prompt and the vulnerable component, combined with ob-
served runtime resource consumption, reflects the prompt’s
potential to trigger DoS. We therefore leverage LLMs’ natu-
ral language understanding to interpret these semantics and
iteratively generate high-quality prompts that both activate
vulnerable components and maximize resource usage.

3.2 Approach Overview
Drawing on the above insights, we propose AgentDoS, a novel
directed grey-box fuzzing approach for efficiently detecting
DoS vulnerabilities caused by resource abusing in LLM-based
agent. As illustrated in Figure 3, AgentDoS consists of two
stages: operator modeling and dynamic fuzzing.

In the first stage, we apply static analysis to identify
resource-consuming sink callsites and determine their re-
source lifecycles. We use intra-procedural taint analysis to
filter out operations that are not affected by user input or are
subject to strict resource limits. For each remaining poten-
tially vulnerable sink, we extract the associated call chains
and enclose function code snippets to provide rich contextual
information for downstream analysis.

In the second stage, we parse the agent’s system prompt
and, together with the extracted call chains, use an LLM to
generate functionality-specific seed prompts. Each seed is ex-



ecuted and stored in a seed pool, where it is evaluated on func-
tionality relevance, resource consumption, and selection fre-
quency. The top-scoring seed is selected for mutation, and two
complementary mutators iteratively refine it from functional
and resource-intensive perspectives. Mutated prompts are dis-
patched according to the sink’s lifecycle: short-lived and full-
lifecycle resources are fuzzed across sessions, whereas long-
lived resources are fuzzed within the same session. AgentDoS
continuously monitors the agent’s web interface to detect
DoS conditions. Upon detection, it outputs the final prompt as
the exploit (EXP) for short-lived resources, and the complete
dialogue sequence for long-lived and full-lifecycle resources.

Here, we illustrate how AgentDoS detects the vulnerability
in the example shown in Figure 2. First, AgentDoS locates
the disk write operation (line 21). By performing forward
control-flow analysis from this sink callsite, it determines
that the written content is never deleted in subsequent logic.
Next, AgentDoS examines the logic for deleting the current
chat session (lines 22–24) and find that the written content
also persists after session deletion. Therefore, we classify it
as a full-lifecycle resource. Further intra-procedural analy-
sis reveals that the written content is controllable through
the function input and lacks size checks, indicating a po-
tentially vulnerable operator. In the dynamic fuzzing stage,
AgentDoS extracts the system prompt and generates an ini-
tial seed. Since the resource is full-lifecycle, each prompt
is dispatched through a new chat session. Based on execu-
tion feedback, AgentDoS determines whether the sink has
been triggered and selectively applies different mutators to
iteratively refine the prompt, guiding it toward activating the
vulnerable component and driving excessive resource con-
sumption. This process is repeated iteratively until the agent
eventually becomes unresponsive, at which point the vulnera-
bility is confirmed.

4 AgentDoS Design

In this section, we present the design of AgentDoS. It consists
of two main modules. The Vulnerable Operator Modeling
module is responsible for identifying all resource-consuming
operators, analyzing their lifecycles, and selecting those that
are potentially vulnerable (in §4.1). The Dynamic Fuzzing
module manages the seed generation, scheduling, and muta-
tion processes to detect these vulnerabilities (in §4.2).

4.1 Vulnerable Operator Modeling

In this phase, AgentDoS leverages static analysis to first locate
resource-consuming operators (in §4.1.1) and determine the
lifecycle of the resources they manipulate (in §4.1.2), and
finally assess the exploitability of these operators (in §4.1.3).

4.1.1 Vulnerability Candidates Locating

AgentDoS primarily focuses on two types of resources: mem-
ory and disk. Regarding memory resources, motivated by
prior work [48, 81], we focus on two key factors for exploit-
ing data storage to induce resource exhaustion. First, data
structures used to store injected data can grow without bound,
requiring container types (e.g., lists, dictionaries, sets) that
hold references to user-controlled inputs. We thus consider
Python’s built-in containers and their insertion operations
as defined in the official documentation [20]. Second, previ-
ous studies [7, 8, 23, 32] report that certain parsing operators,
such as BeautifulSoup [21], may cause excessive memory
consumption when handling deeply nested HTML structures.
Despite official guidelines [5,6] addressing these issues, many
developers overlook them, so we include such scenarios in our
analysis. For disk resources, we focus primarily on disk write
operations, as they directly increase disk space consumption.
We list all predefined sinks in Table 5 of Appendix A.

Subsequently, we leverage static analysis to locate all
sink callsites. Notably, if the operator manipulates a class
member variable, we trace back to the location of its caller
rather than the operator itself to obtain a more accurate con-
text. For example, in the case shown in Figure 2, where
self.memory.append is invoked at line 12, we attribute the
sink callsite to its caller’s location at line 8, rather than to
the operator’s own location. As discussed in §3.1, class and
method names often convey semantic cues about functional-
ity, and surrounding code snippets frequently reflect patterns
indicative of high resource usage, such as repetitive or large-
scale data operations. To capture these, we perform iterative
backward traversal from each sink, enumerating all possible
call paths until no further callers exist in the call graph. Finally,
we extract the function containing the sink callsite as the as-
sociated code snippet for analysis. To mitigate the limitations
of static analysis, particularly the difficulty of resolving im-
plicit calls, we adopt the rule set proposed by LLMSmith [50],
which is designed to enhance the precision and completeness
of control flow graphs (CFGs) extraction in agents.

4.1.2 Resource Lifecycle Identifying

After locating the sink callsite, the next step is to determine the
lifecycle of the resource it manipulates. As outlined in §3.1,
we leverage the agent’s logic for handling single-turn conver-
sations and deleting chat sessions to aid in resource lifecycle
classification. Specifically, we first manually identify the API
entry points responsible for processing single-turn chats and
for deleting chat sessions, and then construct forward CFGs
starting from these entry points.

For memory resources, we analyze the scope of the vari-
able associated with the operator. If the variable is initialized
within the same function, i.e., its scope is limited to the cur-
rent function, we classify it as a short-lived resource, as it
will be automatically reclaimed by the GC once the function



Table 1: List of vulnerable operator features.

Name Description

Operator The name of the potentially vulnerable operator
Location The source code location (file location and line number)
Type The type of resource manipulated by the operator (Memory or Disk)
Lifecycle The lifecycle of resource (Short-lived, Long-lived, or Full-lifecycle)
Snippet The code snippet associated with the operator
Call Chain The call chain to the operator
Controllable Whether it is potentially influenced by user input (True or False)
Constraints Whether capacity limitations exist (True or False)

scope ends. If the variable is referenced by a global variable,
we further analyze the CFG of the chat session deletion pro-
cess. Specifically, if the global variable is reassigned during
session deletion, we classify the resource as long-lived, since
the reassignment removes the reference and enables GC to re-
claim the memory. In contrast, if the variable is neither locally
scoped nor reassigned during session deletion, we categorize
it as a full-lifecycle resource, as it may persist throughout the
entire agent lifecycle unless explicitly cleared.

For disk resources, once the operator location has been
identified, we extract the file path being written to and ana-
lyze its subsequent CFG. If a deletion instruction targeting
this file path is found within the subsequent CFG, the resource
is classified as short-lived, since it is released immediately
after the interaction. If no such deletion occurs within the
subsequent CFG, we further analyze the chat-session deletion
logic. If the file is removed upon session termination, the
resource is classified as long-lived, as it persists throughout
the session but is released when the session ends. If the disk
resource is never deleted, we categorize it as a full-lifecycle
resource, which persists beyond the entire agent lifecycle un-
less explicitly cleaned up by the developer. Finally, due to the
limitations of static analysis (e.g., dynamic path construction),
we conduct manual dynamic validation for cases where the
resource lifecycle cannot be determined statically.

4.1.3 Exploitability Assessing

To reduce the overhead of subsequent dynamic analysis, we
perform a static exploitability assessment. This assessment
consists of two key dimensions: (1) whether the operator can
be influenced by user input, and (2) whether the resource
usage is subject to explicit size constraints. To improve scala-
bility, we employ intra-procedural taint analysis to filter out
operators that are not exploitable.

Specifically, for short-lived in-memory resources, we adopt
different heuristics based on the type of operator. For parser-
like operators (e.g., BeautifulSoup), if any function ar-
gument can be propagated into the operator, we consider
it potentially exploitable. For append-like operations (e.g.,
list.append), we assess whether they reside inside loops
whose iteration count depends on user input [48]; if so, we
flag them as posing a potential resource-exhaustion risk. For
long-lived and full-lifecycle in-memory resources, we con-

servatively assume potential vulnerability if any user input
can propagate into the operator, regardless of structural condi-
tions. For disk resources, we mark an operator as potentially
exploitable if any function input can influence the data be-
ing written to disk. To identify explicit bounds on resource
usage for size-expandable data, we conduct a backward anal-
ysis from each operator to locate conditional checks on size-
related variables. If these checks restrict the sink’s execution,
we consider them as evidence of an enforced size limit.

Finally, in this stage, AgentDoS collects the information
summarized in Table 1. AgentDoS retain only those operators
that are potentially controllable by the user and impose no
explicit constraints on data size (i.e., Controllable = True
and Constraints = False).

4.2 Dynamic Fuzzing

In this phase, AgentDoS first generates functionality-specific
initial seeds (in §4.2.1), then evaluates their quality based
on execution feedback (in §4.2.2), and subsequently itera-
tively mutates the high-quality seeds until a DoS condition is
triggered (in §4.2.3).

4.2.1 Seed Generation

PROMPT 1. Seed Generation Prompt.

To guide the agent in invoking the target component: First, infer
the component’s functionality from the class and function names
in the call chain. Second, create a natural language prompt whose
semantic intent aligns with that functionality.
@EXAMPLE:
INPUT:
<call chain>: calculator→result.append()
<system prompt>: You can use the following tools: 1. Cal-
culator: You can input a mathematical expression as a string
parameter, and the tool will return the computed result. 2. ...
OUTPUT:
<prompt>: Please use the calculator to evaluate the following
expression: 3 * (4 + 5).

As discussed in §3.1, the system prompt provides crucial
context enabling LLMs to infer component semantics. How-
ever, statically extracting this prompt is challenging due to its
fragmented storage across multiple files and a lack of struc-
tural markers. For example, in Langflow [17], the agent’s role
and component descriptions reside in separate modules and
are dynamically combined just before the LLM call, compli-
cating static reconstruction. To overcome this, we capture the
system prompt dynamically at runtime by hooking the third-
party LLM invocation API (e.g., OpenAI API [2]). We trigger
a full query by sending a fixed input (i.e., "hi") and record the
API parameters, extracting the system role field that contains
the assembled system prompt. Since the system prompt does
not change with input, it only needs to be extracted once at
the start of fuzzing for each agent.



Subsequently, we provide the extracted call chains and
system prompt to the LLM for seed prompt generation. Fol-
lowing [49], we adopt a one-shot learning [67] strategy with
Chain-of-Thought (CoT) [70] reasoning to guide the LLM
in producing seed prompts. Specifically, we first guide the
LLM through step-by-step reasoning and supply an example
consisting of a call chain leading to a known sink, the cor-
responding system prompt, a user prompt that successfully
triggers the sink, and an explanation linking the prompt to the
call chain and contextual information. Through this process,
the LLM learns to infer semantic intent from new call chains
and system prompts, and is able to generate functionality-
specific seed prompts that are likely to activate vulnerable
components. An example prompt is shown in PROMPT 1.

4.2.2 Seed Scheduling

Feedback Collection. As noted in §3.1, a successful DoS
prompt must simultaneously encode component invocation
and resource consumption semantics. Accordingly, we evalu-
ate the quality of each seed from these two perspectives.
1) Functionality Score. Similar to [49], we evaluate the func-
tional semantics of seed prompts using both CFG distance
and LLM-based assessment. Specifically, we record the exe-
cution trace and compute its CFG distance to the target sink.
Additionally, we adopt the LLM-as-a-Judge paradigm [85] to
assess the semantic similarity between the prompt and the in-
tended functionality of the component. The LLM is provided
with the seed prompt, the execution trace, which contains rich
semantic signals reflecting the tools invoked and actions taken
by the agent, as well as the component’s system prompt and
call chain. It assigns scores from 0 to 5 across three dimen-
sions: clarity, conciseness, and functional consistency. The
sum of these scores serves as the seed’s semantic score, with
higher values indicating stronger alignment with the target
component. The scoring prompt is illustrated in PROMPT 2.
Finally, the functionality score is computed as:

Fs = x−k +Ls (1)

where x is the shortest distance from the execution trace to the
sink callsite, k is the hyper-parameter that adjusts the weight,
and Ls denotes the semantic score assigned by the LLM.

PROMPT 2. Functionality Score Prompt.

Your task is to score user prompts based on how well their se-
mantic intent aligns with the target component.
For each prompt, assess the following three aspects and assign a
score from 1 (poor) to 5 (excellent):
1.Clarity: Is the prompt presented in a straightforward and pre-
cise manner, making it easy to understand?
2.Conciseness: Is the prompt formulated succinctly, while avoid-
ing unnecessary redundancy or irrelevant details?
3.Relevance: Is the semantic intent of the prompt closely related
to the intended component or function?

2) Resource Consumed Score. At this stage, we leverage
the resource usage incurred by the agent during prompt exe-
cution to evaluate the resource consumption semantics of a
prompt. Considering that different resource lifecycles lead to
exhaustion through different mechanisms, we adopt tailored
evaluation strategies. For short-lived resources, exhaustion
typically occurs during prompt execution. Hence, we measure
the peak resource usage observed during the execution of the
agent. For long-lived and full-lifecycle resources, exhaustion
tends to result from persistent accumulation across multiple
prompts. Therefore, we evaluate the residual resource con-
sumption after the completion of a single chat session, which
reflects the degree to which resources are retained by the
agent beyond prompt execution.

The resource consumed score is calculated as follows:

Rs =

{
(mm −mi) / mt ∗ 100 if short-lived resource
(me −mi) / mt ∗ 100 otherwise

(2)

where mm denotes the maximum amount of resources con-
sumed on the agent server during the execution of the user
request, while mi represents the initial resource usage prior
to the chat. me captures the resource usage after the prompt
has been executed. mt refers to the total amount of system re-
sources. For each operator that manipulates a specific type of
resource, we track and record the usage of the corresponding
resource type accordingly.
Seed Selection. This step selects high-quality seeds for
fuzzing the LLM-based agent. Generally, AgentDoS favors
seeds that either reach targets more effectively or trigger
higher memory consumption. Furthermore, to avoid prema-
ture convergence to suboptimal local solutions, we introduce
a penalty term that reduces the score of seeds that have been
selected frequently. The final score is computed as follows:

Ss = αFs +βRs −N (3)

where N is the number of times the seed has been selected
and α and β are hyperparameters that adjust the weights of
these factors. We then select the highest-scoring seed for the
next round of mutation.

4.2.3 Seed Mutation

A seed prompt may fail to invoke the target component or lack
sufficient resource consumption semantics, thereby prevent-
ing the successful triggering of a DoS condition. To address
this limitation, we propose a reflexion-based mechanism [62]
that iteratively mutates and refines prompts to narrow the
semantic gap between the prompt and both the target compo-
nent’s functionality and its associated resource consumption
behaviors. This mechanism incorporates contextual feedback
from previous executions, which is provided to the language
model in subsequent iterations. Such feedback enables the
model to efficiently learn from prior failures and reinforce



successful patterns, ultimately leading to the generation of
high-quality seed prompts. Building upon this idea, AgentDoS
maintains an independent history for each seed, preserving a
dedicated memory of all mutation attempts associated with
that seed. This memory records key information, including
the newly generated prompt, the corresponding reasoning pro-
cess, the execution trace, and the feedback score obtained
from prior iterations. To further enhance the mutation process,
we introduce two specialized mutators:
Explorer. By default, we apply this mutator to iteratively
refine the selected prompt until it successfully reaches the
target sink. Given that the primary goal of the exploration
phase is to guide the prompt toward invoking the intended
component, we provide the LLM with seed memory enriched
with component-relevant semantics. This memory includes
the associated call chain, system prompt, previously generated
prompts, execution traces, and functionality scores. Similar
to [49], the LLM is guided to refine its reasoning through
structured, step-by-step inference. The LLM continues to
iteratively refine the prompt and update the seed memory,
progressively improving the quality of future mutations. An
example prompt of explorer is provided in PROMPT 3.

PROMPT 3. Explorer Prompt.

Your task is to iteratively refine user prompts by deeply analyzing
the agent’s behavior.
First, evaluate the seed prompt’s intent using its execution trace,
and infer the target component’s functionality from the call chain
and system prompt.
Second, pinpoint which prompt segment caused the agent to
invoke an incorrect component.
Third, use the history of generated prompts to inform your rea-
soning and avoid repeating previous errors.
Finally, revise the prompt to better align its semantics with the
intended call chain and system prompt.

Exploiter. If a selected seed prompt successfully triggers the
target sink, AgentDoS transitions to the mutator phase, which
is designed to further optimize the prompt’s resource con-
sumption semantics. In this stage, the LLM is provided with a
resource-oriented seed memory containing its corresponding
code snippet, previously generated prompts, and their associ-
ated resource consumption scores. Leveraging this contextual
information, the LLM identifies patterns in prior prompts
that resulted in higher resource utilization and generates new
inputs that are more likely to exhaust system resources. In
addition, certain operators rely on external network resources.
For example, agents frequently employ BeautifulSoup to
parse files downloaded from the Internet. To emulate such
scenarios, we manually constructed three types of files, hosted
them on a local server, and supplied the exploiter with URLs
pointing to these resources (see §5). The exploiter can embed
these URLs into mutated prompts, thereby inducing the agent
to process the files and trigger operations that incur substantial
resource overhead. Our prompt is shown in PROMPT 4.

PROMPT 4. Exploiter Prompt.

You are a red team expert specializing in agent-based penetration
testing. We provide you with a set of external resource links. You
may embed these links in your generated prompts to exhaust the
agent’s resources during content parsing.
The resources include:
1. http://large_file<id>.html: A URL pointing to a 30GB HTML
file, where id ranges from 1 to 10.
2. http://deepnest.html: pointing to a deeply nested HTML file.
3. http://deepnest.xml: pointing to a deeply nested XML file.

5 Implementation

We implemented a prototype of AgentDoS consisting of over
1.5k lines of CodeQL code for static analysis and over 5.4k
lines of Python code for fuzzing and instrumentation.

For static analysis, AgentDoS leverages CodeQL [28], in-
corporating the rules proposed by LLMSmith [50] to con-
struct a comprehensive call graph. Specifically, we employ
the FunctionInvocation and BasicBlock APIs to generate
the call graph, and utilize the TaintTracking API to per-
form intra-procedural taint analysis. The analysis results are
exported in CodeQL’s SARIF format [25], which are then
parsed by Python scripts for subsequent processing.

For dynamic fuzzing, following prior work [40, 49, 68],
we evaluated AgentDoS on a subset of our benchmark, and
adopted their hyperparameter settings as the default config-
uration. In our experiments, we used the following values:
k = 1, α = 0.5, and β = 0.5. Consistent with [40, 49], these
parameters are tunable and can be further explored in future
work. Additionally, we manually constructed a deeply nested
HTML file and a deeply nested XML file, each with approx-
imately 15M layers and a size of around 100 MB, ten large
files of roughly 30 GB each, and one hundred smaller files of
approximately 100 MB each. These files were hosted on our
server, and their URLs were incorporated into the Exploiter’s
prompts. For each generated seed, prompts are dispatched
to the agent according to the resource lifecycle: short-lived
and full-lifecycle resources are sent via a new dialogue API
instance, whereas long-lived resources are delivered through a
persistent chat session API to maintain contextual continuity.

During instrumentation, we hook into the OpenAI API [2]
to capture input parameters and extract the agent’s system
prompt. We then leverage Python’s inspect module [16] to
retrieve the agent’s stack frame, which allows us to calculate
the distance between the execution trace and the sink callsite.
In addition, the psutil module [24] is employed to contin-
uously monitor system resource consumption in real time.
For testing, all sink callsites are instrumented, and the agent’s
availability is continuously observed. If the agent becomes un-
responsive during the execution of a sink callsite, AgentDoS
flags the case as a potential DoS vulnerability.

For each agent under test, we only need to manually identify
the API entry points through specific web-framework decora-



tors (e.g., @route.post) and locate the agent’s startup function
from its README. We then insert the prepared instrumentation
code into the corresponding function. This process needs to
be performed only once per agent and typically requires less
than ten minutes.

6 Evaluation

6.1 Experimental Setup
Research Questions. Our evaluation seeks to answer the
following research questions.

• RQ1: What are the purposes for which agents retain re-
sources after a single chat?

• RQ2: How effective and efficient is AgentDoS at detecting
DoS vulnerabilities in real-world agents?

• RQ3: How does AgentDoS perform in comparison to state-
of-the-art approaches?

• RQ4: What is the contribution of each component of
AgentDoS to its overall performance?

Dataset. Our final dataset comprises 20 open-source LLM-
based agents, with detailed information provided in Table 2.
These agents were curated from popular open-source reposi-
tories (e.g., GitHub [14]) by following the selection protocol:
1) We first queried repositories using keywords such as “LLM
Agent” and “Autonomous Agents”, ranking the results in de-
scending order of star count. 2) We then verified that each
candidate application was actively maintained during 2025
to ensure the inclusion of current and supported projects. 3)

Table 2: Details of our dataset.

Applications Stars 1 LoCs 1 CVEs / Vulns # Potential Vuln. Operators 2

S L F

AutoGPT 176k 81.5k 7 / 7 26 0 4
Dify 104k 140k 0 / 1 259 7 4
LangFlow 81.4k 96.6k 0 / 4 123 49 2
RagFlow 60.1k 75.1k 0 / 2 235 40 5
Autogen 46.4k 88.5k 0 / 1 75 23 14
Quivr 38.1k 6.1k 0 / 0 11 1 2
LangChatchat 35.3k 16.1k 0 / 2 18 3 5
Khoj 30.4k 35.8k 0 / 1 52 3 0
Kotaemon 22.7k 29.1k 0 / 1 67 1 10
GPT-Researcher 22.1k 12.5k 0 / 3 30 7 9
Owl 17.2k 15.2k 0 / 0 25 0 6
MaxKB 16.9k 42.8k 0 / 1 80 15 7
DB-GPT 16.8k 150.0k 0 / 1 202 46 40
SuperAGI 16.4k 27.7k 3 / 3 48 17 4
DeerFlow 15.5k 8.0k 0 / 1 5 0 1
Chuanhu 15.4k 10.0k 0 / 1 18 18 3
AgentZero 10.6k 15.2k 0 / 1 21 13 9
Bisheng 9.0k 144.3k 0 / 0 217 23 27
AgentScope 7.5k 53.4k 5 / 6 24 17 9
Taskweaver 5.8k 16.4k 0 / 0 30 3 12

Total / / 15 / 36 1566 286 173
1 We use CodeTabs [9] to calculate repository stars and lines of code (LoCs).
2 The number of detected potential vulnerable operator callsites, categorized by the

lifecycle of the resource they manage: Short-lived (S), Long-lived (L), and Full-
lifecycle (F).

Finally, we manually inspected each application to verify that
it operated as a web service, which is required under the threat
model described in §2.4. Among the 20 selected agents, 17
have received more than 10,000 GitHub stars, and many have
already been adopted in academic research [49,50,55,60,73].
These characteristics highlight both the reliability and the rep-
resentativeness of our dataset for the purposes of this study.
Environment. For evaluation, we adopted GPT-4.1 [29] as
the base model for both AgentDoS and the tested agents, with
the temperature fixed at 0 to ensure deterministic outputs. All
agents were deployed in their default configurations within
Docker containers [12]. To emulate adverse deployment con-
ditions, we provisioned hardware resources through Docker,
assigning only the minimum required by each agent. When
such requirements were not explicitly specified, we defaulted
to 4 GB RAM, 10 GB disk, and a 64-core Intel CPU, con-
sistent with Dify’s [11] minimum specifications. Meanwhile,
AgentDoS was executed on a separate machine equipped with
a 64-core Intel CPU and 256 GB RAM.

6.2 RQ1: Purposes Understanding

In this phase, we perform analysis to understand the purposes
for which agents retain resources after a single chat.
Experiment Setup. We executed the Vulnerable Operator
Modeling component of AgentDoS on each agent in our
dataset. For each agent, we manually identified the APIs re-
sponsible for handling individual chats and for deleting chat
sessions. Subsequently, we randomly sampled 5% of the sink
call sites from each resource-lifecycle stage, executed the ap-
plications, and used Python’s weakref module [31] to monitor
the lifecycles of the specified resources in order to evaluate
the accuracy of lifecycle identification. Then, we selected
the five most well-known agent applications and, leveraging
their comprehensive documentation, manually analyzed the
purposes of resources retained after a single conversation (i.e.,
long-lived and full-lifecycle resources).
Accuracy. Overall, the Vulnerable Operator Modeling compo-
nent ultimately identified 2025 potential vulnerable operators
across the 20 agents. Among them, short-lived, long-lived,
and full-lifecycle resources accounted for 77.3%, 14.1%, and
8.6%, respectively. After manual verification, the lifecycle
identification accuracy was 95.2%; most errors stemmed from
limitations in Python’s static analysis (e.g., unresolved indi-
rect calls).
Purposes Understanding. We then spent approximately 12
man-hours analyzing the purposes of resources associated
with 148 callsites in the five most well-known applications.
This process was facilitated by the rich documentation pro-
vided by these agents, as well as contextual information such
as call chains extracted during static analysis, which helped re-
duce the required manual effort. Specifically, ❶ for long-lived
resources, we identified three primary usage patterns: 27.4%
store the context of the current chat session, including user in-



puts, LLM responses, and outputs from executed actions (e.g.,
the result of a calculator operation). These records are later
provided to the LLM in subsequent chats to maintain context
consistency. 35.9% also store session-related state informa-
tion, such as execution traces indicating which components
the agent has invoked. However, unlike agent memory, this
data is not sent to the LLM in subsequent chats; instead, it
serves as operational logs for developers. 36.7% are used for
initializing the chat session, such as setting the system prompt
and configuring the available tools. ❷ For full-lifecycle re-
sources, we found that 37.9% were associated with tools such
as Request, which download files as instructed by the LLM
for subsequent conversational analysis. However, these files
are never deleted after download, remaining in the system
indefinitely. The remaining 62.1% were intended for oper-
ational purposes by developers, such as logging execution
processes after each run.

6.3 RQ2: Performance of AgentDoS

In this phase, we evaluated the effectiveness and efficiency of
AgentDoS in detecting vulnerabilities across the dataset.
Experiment Setup. We executed AgentDoS on each agent in
our dataset. For every agent, we manually instrumented the
code and designated the web API receiving input prompts
as the entry point for AgentDoS. We imposed a 20-minute
time limit for testing each sink callsite. To further improve
efficiency, AgentDoS skips subsequent testing of a sink call-
site if it has not been triggered within the past three minutes
or if recent resource usage remains below a specified thresh-
old—namely, for short-lived resources, if the per-chat increase
in resource consumption over three minutes is less than 20
MB, and for other resource lifecycles, if the cumulative usage
increase during this period is below 20 MB.
Effectiveness. Overall, AgentDoS discovered 36 zero-day vul-
nerabilities (detailed in Table 2), with a precision rate of 100%.
We promptly reported all confirmed issues to the respective
developers. To date, 15 CVE identifiers have been assigned
(detailed in Appendix C).
Efficiency. The fuzzing process consumed 119.08 CPU hours
across the 20 agent applications, averaging 5.95 hours per
agent. The Seed Prompt Generation, Scheduling, and Muta-
tion phases accounted for 17.1%, 14.2%, and 68.6% of the
total runtime, respectively. Among them, Seed Mutation was
the most time-consuming phase due to its extensive inter-
actions with both the tested agent and the LLM, which sig-
nificantly increased execution time. Regarding LLM usage,
AgentDoS consumed an average of 9.32 million tokens per
agent, with the estimated cost being 44.3$, based on GPT-4.1
token pricing as of August 2025 [30].
False Positive/Negative Analysis. After manually reviewing
each report, we confirmed that all 36 vulnerabilities were true
positives. This exceptional precision is primarily attributed to
the robustness of our bug oracle. Regarding the potential false

Table 3: Comparison between AgentDoS and AgentFuzz.

Baselines TP FP FN Prec(%) Recall(%)

AgentFuzz 3 0 35 100% 7.9%
AgentDoS 36 0 2 100% 94.7%

negatives of AgentDoS, due to the lack of public ground truth
and the scarcity of disclosed target vulnerabilities, we fol-
lowed prior work [49,81,82] and randomly sampled 103 (5%)
sink callsites that AgentDoS did not flag as vulnerable. We
then manually examined the corresponding source code to as-
sess its exploitability. After a thorough analysis, we classified
these sink callsites into four categories:

❶ 95.15% of sinks were uncontrollable by the user, mean-
ing they cannot be exploited via input prompts. To en-
sure soundness and efficiency, our exploitability assessment
adopts intra-procedural tracking with over-approximation;
thus, some non-exploitable sinks may still pass the assess-
ment. ❷ 0.97% were rendered non-exploitable due to the
maximum context window length of the underlying LLM.
When the combined conversation history and user request
exceed this limit [29], the session cannot proceed, preventing
exploitation of the sink callsite. ❸ 1.94% of the vulnerabil-
ities are impractical to exploit in real-world settings due to
input size limitations, which prevent the attack from complet-
ing within a feasible time frame. For example, in RAGFlow,
a sink simply stores LLM outputs. Given that the output
size of an LLM under normal requests is limited (approxi-
mately 2 KB [38]), exploiting this sink would require over 24
hours of continuous operation—far exceeding our 20-minute
per-callsite testing window. ❹ 1.94% of them were truly vul-
nerable but were missed by AgentDoS. These vulnerabilities
require more sophisticated payloads to bypass existing safe-
guards. For example, SuperAGI (16.4k stars on GitHub) al-
lows users to download files into a specific working directory.
By default, all files in this directory are deleted after each chat
session. However, if the filename is crafted as ../../xxx, a
path traversal occurs, causing the concatenated storage path
to escape the working directory constraint. Downloaded con-
tent can persist on disk across sessions, eventually leading to
resource exhaustion.

6.4 RQ3: Comparison with AgentFuzz

To assess the effectiveness of our approach, we compare
AgentDoS with AgentFuzz [49], the only existing tool capa-
ble of dynamically uncovering vulnerabilities in LLM-based
agents, on the entire dataset.
Baseline Setup. We followed the instructions in the open-
source repository of AgentFuzz [27] to set up the prototype
and conduct vulnerability detection. AgentFuzz locates sink
callsites and iteratively mutates prompts, issuing each in a
new chat session until the sink is reached. For a fair com-



Table 4: Result of ablation study.

Variants TP FP FN Prec(%) Recall(%)

w/o Generation 31 0 7 100% 81.6%
w/o Scheduling 25 0 13 100% 65.7%
w/o Mutation 16 0 22 100% 42.1%
AgentDoS 36 0 2 100% 94.7%

parison, we replaced the sink callsites with the potentially
vulnerable operators identified by our approach and used our
oracle to determine whether a vulnerability was triggered,
while keeping all other components unchanged.
Benchmark Setup. Given the absence of a public benchmark,
we constructed one by aggregating all vulnerabilities detected
by both AgentDoS and AgentFuzz, along with two missing
vulnerabilities identified during false negative analysis. In
total, the benchmark consists of 38 verified vulnerabilities.
Result Overview. Table 3 presents a detailed comparison
of the efficacy of AgentDoS and AgentFuzz across the entire
dataset. Overall, AgentDoS exhibits significantly stronger per-
formance, achieving a twelvefold improvement in recall and
identifying twelve times more vulnerabilities compared to
AgentFuzz. Specifically, when evaluated against the ground
truth, AgentDoS successfully identifies 36 vulnerabilities. In
contrast, AgentFuzz detects only 3 vulnerabilities, all of
which are a subset of those discovered by AgentDoS. These
results underscore the superior capability of AgentDoS.
False Negatives in AgentFuzz. For the 35 false negatives,
AgentFuzz missed them primarily for two reasons. First, 5 of
them were caused by the lack of resource lifecycle modeling:
AgentFuzz issues each prompt in a new chat session and there-
fore cannot accumulate long-lived resources across interac-
tions. Second, the remaining 30 cases stem from the absence
of an evaluation mechanism for the resource-consumption
potential of prompts and the lack of semantic mutations that
induce high resource usage. As a result, although the gen-
erated prompts reach the sink, they fail to make the agent
consume sufficient resources to trigger a DoS condition.

6.5 RQ4: Ablation Study
Experiment Setup. We conducted an ablation study to inves-
tigate the contribution of each key component of AgentDoS.
Specifically, we designed three variants of AgentDoS, each
disabling one core component while retaining the rest of the
system. We evaluated all variants on the same dataset and
assessed their effectiveness based on the number of vulnera-
bilities they were able to identify. The details are as follows:

• w/o Generation: The Seed Generation module was re-
moved, and the predefined prompts provided by LLM-
Smith [50] were directly used as initial seeds.

• w/o Scheduling: The Seed Scheduling module was disabled,
and seeds were randomly sampled from the seed pool.

• w/o Mutation: Both mutators were disabled, and vulnera-
bility detection relied exclusively on the initial seeds.

Module Contribution Analysis. Table 4 presents a detailed
comparison between AgentDoS and its three variants. The
results are analyzed as follows.

Usefulness of Seed Generation. The w/o Generation variant
missed 7 vulnerabilities, resulting in a recall rate drop to
81.6%. This decline indicates that the w/o Geneartion variant
is unable to generate functionality-specific seeds expressed in
natural language. Although the subsequent mutator attempts
to mutate the semantic content of the prompts, this variant still
fails to produce prompts that can reach the sink and trigger
DoS behavior within a limited timeframe.

Usefulness of Seed Scheduling. The w/o Scheduling vari-
ant missed 9 vulnerabilities, resulting in a recall rate drop
to 65.7%. The missed vulnerabilities stem from the random
seed selection strategy used in the w/o Scheduling variant,
which failed to prioritize high-quality seeds and instead re-
peatedly mutated low-potential ones. This inefficient mutation
process wasted time, ultimately leading to timeouts. These
findings highlight the importance of our scheduling strategy
in improving fuzzing efficiency.

Usefulness of Seed Mutation. Without the mutation mod-
ule, w/o Mutation variant can only rely on simpler and lower-
quality initial seeds to trigger vulnerabilities. In many cases,
these initial seed prompts fail to even reach the vulnerable
component, let alone trigger significant resource consumption.
This makes it difficult to uncover vulnerabilities that require
a single prompt to exhaust resources. Moreover, for vulner-
abilities that depend on cumulative resource exhaustion, the
resource usage of a single prompt may be too minimal to
cause substantial accumulation within a limited timeframe,
making it challenging to induce DoS behavior.

7 Case Study

We showcase two real-world DoS vulnerabilities to highlight
AgentDoS ’s practical effectiveness.
Case I: Short-lived Resource DoS Vulnerability in L** Agent
Application. L** is a widely used agent application with over
80k GitHub stars [14] (name anonymized for ethical reasons).
As shown in Figure 4 of Appendix B, the agent iterates over
all LLM-generated URLs (line 4), fetches each (line 5), and
loads the retrieved content into memory (line 6), repeating
the process even for identical content. Since all_docs is a
local variable, its contents are freed by the GC at function
termination and thus considered short-lived resources. How-
ever, an attacker can repeatedly request the same large file
within a single chat (i.e., load website http://large_file.html
1000 times). In this case, the agent repeatedly accesses the file
until memory resources are exhausted, thereby triggering a
DoS condition. We reported the issue to the developers, who
confirmed the vulnerability.



Case II: Long-lived Resource DoS Vulnerability in L* Agent
Application. L* is a popular agent application with over 35k
GitHub stars [14]. As shown in Figure 5 of Appendix B, upon
each LLM interaction, the agent sends the latest k developer-
defined records (default: 0) to preserve context (lines 3-4),
executes the requested tool (line 5), in this example, DBSearch
performing a select * from table query, and appends the
user input, LLM plan, and tool output to an in-memory buffer
(self.history, line 6). The buffer is cleared when the ses-
sion ends, so it is considered as a long-lived resource. An
attacker can repeat conversations in a chat session, eventu-
ally causing history to consume too much memory, resulting
in a DoS. Because chat history is not sent to the LLM by
default, the model’s context limit is never reached, allowing
unbounded growth. We disclosed the issue to the developers,
who confirmed the vulnerability.

8 Related Work

Vulnerability Detection of LLM-based Agents. DoS vul-
nerabilities caused by resource exhaustion represent a sig-
nificant threat to the security and reliability of agent-based
systems. However, to the best of our knowledge, no prior
work has specifically examined resource exhaustion issues
in LLM-based agents. The most closely related studies, such
as Corba [86] and Breaking Agents [80], focus on mislead-
ing agents into performing repetitive or irrelevant actions,
rather than exposing or analyzing resource exhaustion vulner-
abilities within agent implementations. Other existing works
primarily investigate security issues such as taint-style vulner-
abilities [49, 50, 56], prompt leakage [41, 57, 58], jailbreaking
[35, 61, 75, 77], and prompt injection [39, 51, 79]. All of them
represent fundamentally different vulnerability patterns.
DoS Vulnerability of LLM. Recent studies [38, 43, 76, 83]
have explored DoS attacks that increase inference latency in
LLMs, thereby reducing the availability of LLM services to
other users. These approaches typically generate adversarial
inputs, such as misspelled words or non-semantic prompts,
that cause the model to produce excessively long outputs.
However, such attacks mainly target resource consumption
during LLM inference, whereas our work focuses on resource
exhaustion within the agent implementation layer. Moreover,
agents usually rely on LLMs hosted by third-party providers
(e.g., OpenAI [22]), which implement robust resource man-
agement and isolation mechanisms. Consequently, attacks
that exploit LLM-level resource consumption are unlikely to
significantly impact the availability of agents for other users.
DoS Vulnerability Detection in Traditional Applications.
DoS attacks resulting from unbounded resource consump-
tion have attracted considerable attention in recent years [66].
However, most existing work primarily targets CPU resource
exhaustion, such as Regular Expression Denial of Service
(ReDoS) [46, 52, 63, 64, 69] and algorithmic complexity (AC)
vulnerabilities [44, 45, 53, 54, 59, 78], which are not directly

applicable to memory or disk resource exhaustion in LLM-
based agent systems. Although a few studies have explored
memory exhaustion [36, 47, 48, 81] and memory leak is-
sues [34, 37, 65, 71], they generally do not involve the genera-
tion of semantically valid prompts, nor do they consider the
lifecycles of resources managed by agents. As a result, these
methods often suffer from high false negative rates when
applied in the context of agents.

9 Discussion

The Stealthiness of Resource Exhaustion Vulnerability
Attacks in Agents. ❶ Lack of overtly malicious actions. Un-
like RCE or SQL injection vulnerabilities, which typically
involve explicit malicious intent (e.g., executing system calls
or deleting databases), resource abuse often resembles benign
user requests and usually lacks overtly malicious actions (e.g.,
merely downloading a file for summarization). Some security-
conscious developers explicitly instruct the agent, via its sys-
tem prompt, to re-check any code before execution to intercept
malicious intent. Consequently, existing attacks [50,56] often
require techniques such as prompt injection [51] to hijack the
LLM’s responses. However, triggering large-scale resource
exhaustion lacks such explicit malicious features and there-
fore can succeed without relying on such advanced techniques.
❷ Attack Re-delegation. An attacker can re-delegate the ma-
licious role to a benign user. Specifically, the attacker first
consumes a large portion of the agent’s resources, bringing
usage just below the upper limit. When a benign user sub-
sequently interacts with the agent, their legitimate resource
consumption easily exceeds the limit, causing agent failures.
From the maintainer’s perspective, the resulting DoS appears
to be caused by the benign user, effectively obscuring the true
source of the attack.
Resource Management Challenge in Agents. Through in-
depth code analysis and active communication with develop-
ers, we find that balancing security and availability remains a
major challenge. Modern LLM-based agents increasingly em-
phasize the ability to autonomously perform complex tasks,
which often involves generating and managing large inter-
mediate data in memory or on disk. For instance, an agent
performing a literature review may need to download nu-
merous papers to local storage. While resource limits can
mitigate exhaustion, they may also hinder task completion
by preventing necessary downloads. In addition, unlike tradi-
tional software systems with fixed business logic, LLM-based
agents autonomously decide which contextual information to
use in subsequent tasks. As a result, developers find it difficult
to predict which allocated resources will no longer be needed
and therefore tend to preserve as much context as possible,
thereby increasing the risk of resource abuse.
Mitigation. After communicating with developers, we found
that developers typically adopt mitigation strategies such as
stricter input validation, size limitations, timeout mechanisms,



and resource quotas to address resource-exhaustion vulner-
abilities. For example, for the vulnerability we identified in
AutoGPT, which allowed users to download arbitrary files
and led to disk resource exhaustion, the project now enforces
a per-download file size limit of 100 MB, a 1 GB limit per
execution directory, and automatic deletion of the execution
directory after task completion [19]. These mitigations are ef-
fective in addressing resource-exhaustion vulnerabilities. Ad-
ditionally, we identify several potential defense mechanisms.
First, resource limits should be set according to the intended
use cases and operational context, complemented by dedu-
plication mechanisms to restrict the volume of retained data
and control overall resource consumption. Second, systems
should continuously monitor resource usage and, upon de-
tecting abnormal patterns, issue alerts or temporarily suspend
storage operations, thereby enabling timely administrative
intervention and ensuring service availability.
Limitations. As noted in §2.4, AgentDoS requires source
code access and therefore cannot be directly applied in black-
box commercial agents (e.g. OpenAI’s GPTs, or agents on
platforms like Coze). Nevertheless, the underlying resource-
consumption-guided fuzzing methodology can be adapted
for black-box testing when feedback on resource usage is
available, for example, through response latency or other side-
channel signals.

10 Conclusion

In this work, we present the first systematic security study
of resource management in LLM-based agents. We identify
three representative patterns of resource lifecycle manage-
ment, each enabling distinct avenues for DoS exploitation. To
address this threat, we propose AgentDoS, a directed grey-box
fuzzing framework, and evaluate it on 20 real-world agent
applications. Our results show that AgentDoS uncovered 36
high-risk zero-day vulnerabilities affecting 16 applications,
15 of which have over 10,000 stars on GitHub. To date, 15 of
these vulnerabilities have already been assigned CVE identi-
fiers. We believe that AgentDoS not only advances the security
analysis of LLM-based agents but also offers actionable in-
sights for practitioners seeking to mitigate the growing risks
posed by agent vulnerabilities.
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Ethical Considerations

Vulnerability Disclosure. We promptly reported all vulnera-
bilities discovered and have strictly adhered to the disclosure
timeline established by the relevant CVE Numbering Author-
ities (CNA). Throughout the process, we maintained active
and responsible communication with the developers of the
affected projects and provided assistance in the remediation
of the identified vulnerabilities. Although some issues were
still undergoing mitigation at the time of paper submission,
we intentionally omitted all sensitive or identifying details
related to the vulnerabilities. Additionally, all vulnerabilities
and affected applications have been fully anonymized. Con-
sequently, the publication of this paper does not pose any risk
to end users or real-world systems.
Stakeholders. The primary stakeholders in this research in-
clude developers and end-users of LLM-based agents. ❶ For
users, a resource exhaustion attack can severely degrade their
interaction experience with the system. Such attacks may
cause significant response delays, unresponsiveness, or even
complete service unavailability, preventing users from access-
ing the intended functionalities. In addition, ongoing tasks
may be interrupted, leading to data loss or incomplete oper-
ations. ❷ For developers, resource exhaustion attacks pose
both operational and financial risks. When attackers consume
excessive storage resources, legitimate requests can no longer
be processed, leading to service outages and potential rev-
enue loss. Developers must then spend additional effort on
system recovery, vulnerability mitigation, and resource isola-
tion, which increases maintenance costs. Moreover, repeated
availability incidents can harm the developer’s or organisa-
tion’s reputation and may expose them to compliance or legal
scrutiny if critical services are affected. In this work, we aim
to assist researchers and developers in identifying and miti-
gating resource exhaustion vulnerabilities in these systems,
thereby enhancing their robustness and security. This work
contributes to the broader goal of building more reliable and
resilient agent-based applications.
Potential Impact. Throughout the entire experimental pro-
cess, we adhered to the principles of Beneficence and Respect
for Law and Public Interest as outlined in the Belmont Report.
All agent systems used in our experiments were open-source
projects, which were downloaded and deployed within a fully
local testing environment. At no point did our activities inter-
act with, or exert any influence on, real-world systems or user
data. Consequently, this research does not pose any tangible
harm or violations of human rights.
Dual Use. On the beneficial side, developers can use



AgentDoS to assess whether their agent applications contain
DoS vulnerabilities, thereby significantly improving the se-
curity of agent systems. We also acknowledge the risk that
malicious actors could misuse AgentDoS to bypass existing
defense mechanisms and introduce new security threats. How-
ever, because AgentDoS requires access to agent source code,
its potential for misuse against closed-source commercial
agent services is limited. Nevertheless, we take steps to mini-
mize the risk of misuse: AgentDoS will be made conditionally
available only to researchers who submit a formal request,
provide evidence of their qualifications, and are approved
through our review process. This controlled access model
aims to prevent misuse while promoting legitimate research
in the academic field of agent security.
Mitigations. Our communication with developers reveals
that existing mitigation strategies primarily rely on input val-
idation, size constraints, timeout mechanisms, and resource
quota limitations. These approaches have demonstrated prac-
tical effectiveness in preventing adversaries from exhausting
the computational resources of agent servers and represent
broadly applicable defense mechanisms. Meanwhile, we con-
tinue to collaborate with developers to explore more advanced
mitigation strategies.
Articulating Decision. In alignment with the Beneficence
principle outlined in The Menlo Report and the ethical con-
siderations discussed in existing work [42], we believe that
our work makes a positive ethical contribution. Specifically,
the AgentDoS framework is designed to assist the research
community in strengthening the robustness and security of ex-
isting LLM-based agents, thereby promoting the development
of more trustworthy, resilient, and ethically grounded agent-
based systems. All identified vulnerabilities were responsibly
reported, and we have strictly followed the disclosure time-
lines established by the relevant CNAs. To prevent potential
misuse, all sensitive or identifying details have been inten-
tionally omitted, and both the vulnerabilities and affected
applications have been fully anonymized. Furthermore, all
experiments were conducted in isolated local environments,
without any interaction or impact on real-world systems or
user data. We therefore affirm that this research and its publi-
cation pose no risk to end users or operational systems.

Open Science

To promote transparency and reproducibility, and in align-
ment with the principles of open science, we will make our
research artifacts publicly accessible. Certain materials will
be conditionally available only to researchers who submit a
formal request, provide evidence of their qualifications, and
obtain approval through our review process. Specifically, (1)
the set of 20 agent applications employed in our experiments
and (2) the baseline implementations prepared for compara-
tive evaluation will be released as open-access resources [4].
In contrast, (3) for ethical considerations, the source code of

the AgentDoS prototype will be conditionally available [26]
only to qualified researchers who complete the formal request
and review process.
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A Sink List

Table 5 lists the sinks used in AgentDoS.

Table 5: Sink types and corresponding classes and methods.

Package Class Methods Resource Type

buildins list append, extend Memory
buildins set add, update Memory
buildins dict update Memory

bs4 BeautifulSoup __init__ Memory
html5lib / parse Memory
requests / get, post, request Memory
requests Session get, post, request Memory
urllib3 PoolManager urlopen, reqeust Memory
urllib3 / reqeust Memory
aiohttp ClientSession get, post, request Memory
httpx AsyncClient get, post, request Memory

buildins TextIOWrapper write, writelines Disk
aiofiles AsyncTextIOWrapper write, writelines Disk

B Case Study

Figure 4 and Figure 5 show simplified code snippets of §7.

Class URLComponent:
    def run(input):
    …
    all_docs = []
    # input = [http://large_file.html ] * 1000
    for url in input:
        docs = request.get(url)
        all_docs.extend(docs)
    …

1.
2.

3.

4.
5.
6.

Attacker

Access the website at http://
large_file.html a total of 1000 times.

Record any response data for analysis. Agent

Single

 chat

Figure 4: Short-lived Resource DoS vulnerability in L** agent
application.

Class Agent:
    def query(input):
    …
    send_history = self.history[-history_len: ]
    # history_len default is 0
    response = chat(input, send_history)
    # tool is one of [Calculator, DBSearch]
    result = tool.run(response[var])
    #  result = DBSearch.run("select * from table")
    self.history.append((input, response, result))
    …

1.
2.

3.

4.

5.

6.

Attacker

Enumerate all available data 
entries in the database, including 

their field names and values. Agent

Repeat

1000 times

Figure 5: Long-lived Resource DoS vulnerability in L** agent
application.

C Assigned CVEs

Table 6 provides details of the identified vulnerabilities, in-
cluding the lifecycle and type of the associated resource.

Table 6: Detected vulnerabilities and assigned CVEs.

Applications CVEs Lifecycle Resource Type

AutoGPT

CVE-2025-3**36 Short-lived Disk
CVE-2025-3**37 Short-lived Disk
CVE-2025-3**23 Short-lived Disk
CVE-2025-3**24 Short-lived Disk
CVE-2025-3**22 Short-lived Disk
CVE-2025-3**92 Short-lived Disk
CVE-2025-3**93 Short-lived Memory

Dify Assigning Full-lifecycle Disk

Langflow

Assigning Short-lived Memory
Assigning Short-lived Memory
Assigning Short-lived Memory
Assigning Full-lifecycle Disk

Ragflow Assigning Long-lived Memory
Assigning Short-lived Memory

Autogen Assigning Short-lived Memory

LangChatchat Assigning Long-lived Memory
Assigning Long-lived Memory

Khoj Assigning Short-lived Memory

Kotaemon Assigning Long-lived Memory

GPT-Researcher
Assigning Full-lifecycle Disk
Assigning Full-lifecycle Disk
Assigning Full-lifecycle Disk

MaxKB Assigning Long-lived Memory

DB-GPT Assigning Full-lifecycle Disk

SuperAGI
CVE-2025-4**99 Full-lifecycle Disk
CVE-2025-4**01 Full-lifecycle Disk
CVE-2025-4**03 Full-lifecycle Disk

DeerFlow Assigning Full-lifecycle Disk

Chuanhu Assigning Short-lived Memory

AgentZero Assigning Short-lived Memory

AgentScope

CVE-2025-4**98 Short-lived Memory
Assigning Short-lived Memory

CVE-2025-4**90 Full-lifecycle Disk
CVE-2025-4**94 Full-lifecycle Disk
CVE-2025-4**26 Full-lifecycle Disk
CVE-2025-4**32 Full-lifecycle Disk
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