
Exposing the Hidden Layer: Software Repositories
in the Service of SEO Manipulation

Mengying Wu†∗, Geng Hong†∗, Wuyuao Mai†, Xinyi Wu†, Lei Zhang†, Yingyuan Pu‡, Huajun Chai‡,
Lingyun Ying‡, Haixin Duan§¶ and Min Yang†

†Fudan University, China, wumy21@m.fudan.edu.cn, {ghong, maiwuyuao20, xinyiwu20, zxl, m yang}@fudan.edu.cn
‡QI-ANXIN Technology Research Institute, China, {puyingyuan, chaihuajun, yinglingyun}@qianxin.com

§Tsinghua University, China, duanhx@tsinghua.edu.cn
¶Quancheng Laboratory, China

Abstract—Distinct from traditional malicious packages, this
paper uncovers a novel attack vector named “blackhat Search
Engine Optimization through REPositories (RepSEO)”. In this
approach, attackers carefully craft packages to manipulate search
engine results, exploiting the credibility of software repositories
to promote illicit websites.

Our research presents a systematic analysis of the under-
ground ecosystem of RepSEO, identifying key players such as
account providers, advertisers, and publishers. We developed an
effective detection tool, applied to a ten-year large-scale dataset
of npm, Docker Hub, and NuGet software repositories. This
investigation led to the startling discovery of 3,801,682 abusive
packages, highlighting the widespread nature of this attack. Our
study also delves into the supply chain tactics of these attacks,
revealing strategies like the use of self-hosted email services
for account registration, redirection methods to obscure landing
pages, and rapid deployment techniques by aggressive attackers.
Additionally, we explore the profit motives behind these attacks,
identifying two primary types of advertisers: survey-based adver-
tisers and malware distribution advertisers. We reported npm,
NuGet, and Docker Hub about the RepSEO packages and the
related supply chain vulnerabilities of Google, and received their
acknowledgments. Software repositories have started removing
the abusive packages as of this paper’s submission. We also open-
source our code and data to facilitate future research.

Index Terms—software repository, blackhat SEO, supply chain
vulnerability.

I. INTRODUCTION

Software repositories such as npm [1], NuGet [2], and
Docker Hub [3] have gained immense popularity among devel-
opers worldwide. They provide developers with a convenient
way to share, publish, and install software packages and
libraries. Through these software repositories, developers can
easily access millions of open-source projects and third-party
components, accelerating the software development process
and promoting code reuse. With the widely used software
repositories, researchers have demonstrated severe security
vulnerabilities, such as malicious packages [4, 5], dependency
confusion [6, 7], and compromised name attacks [8, 9].
Blackhat SEO through the software repositories. While
prior research has uncovered security issues in software reposi-
tories, it predominantly centers on the malicious packages pol-
luting victims through malicious code behavior, i.e., injecting

∗These authors contributed equally to this work.

Fig. 1. Motivation example. A search of “online casino” will lead to webpages
with high page ranking from software repositories such as Docker Hub and
NuGet, which contain introductions and links to the casino websites.

malicious code into the downstream projects. In this paper, we
reveal a novel attack: blackhat Search Engine Optimization
through the REPositories (RepSEO). Blackhat SEO involves
aggressive tactics violating search engine guidelines to manip-
ulate algorithms and unfairly boost website rankings in search
results. Since search engines can quickly label hacked SEO
websites [10], attackers target software repositories. These
software repositories are favored by search engines for their
high-quality content, leading to higher domain ranks and
increased visibility for the embedded links. Meanwhile, the
open-source community lacks sufficient and effective auditing
measures that entice attackers to publish SEO content on
software repositories, compared to well-known user-generated
content platforms. For example, 92% of Twitter spam accounts
were suspended within three days [11].

As shown in Fig. 1, a Google search query for “online
casino” might return results featuring recommendations from
Docker Hub, showcasing items such as the “best online casino
that pays real money”. Upon clicking this link, users are
directed to a page with a Docker Hub project homepage. An
illusive and conspicuous call-to-action button is present on
the homepage, urging visitors to click on and then redirect to
the casino website. This illustrates these software reposito-
ries have been manipulated to facilitate the RepSEO attack.

In RepSEO, attackers exploit the open-source community’s
reputation by crafting and publishing enormous packages with
promotional content. 1

Breakdown of RepSEO. To the best of our knowledge, this
paper represents the first systematic study to uncover the
underground ecosystem of blackhat SEO through software
repositories. Our research comprehensively demonstrates how
attackers have successfully published abusive packages on
these software repositories and identify the various parties
involved in the RepSEO supply chain. We have identified three
critical participants in the creation of these abusive packages:
the account provider, the advertisers, and the publishers (Sec-
tion II-A). To thoroughly evaluate the severity of these attacks,
we created a detection tool with features across five aspects
to identify RepSEO packages, with an average precision and
recall of 98.27% and 98.24%.

Our dataset, encompassing 17,087,643 packages from
2011/01/07 to 2024/03/31, revealed 3,801,682 RepSEO pack-
ages, over 22.25% of the total. Docker Hub had the most,
2,725,573, followed by npm with 929,614, and NuGet with
146,495 (Section III). The longitudinal study observed that
software repositories have initiated responses to this abuse,
albeit after a significant delay. For instance, npm began to
notice the upsurge in abusive package uploads four months
after the initial surge, implementing remedial actions in July
2023. However, there were still 2,812,618 RepSEO packages
hosted on these software repositories before we reported.
Supply chain of RepSEO. In the RepSEO supply chain
(Section IV), various parties exhibit unique characteristics.
Account Providers create numerous email addresses using
self-hosted services for registering repository accounts, aiding
RepSEO execution. Advertisers employ redirection techniques
to easily configure and conceal promotion links. Interestingly,
beyond public URL shortening services, we found a new “un-
derground shorten links service” for servicing landing pages.
Besides, attackers also exploited Google’s redirect service to
bypass spam detection. Publishers can rapidly activate tens of
thousands of accounts on software repositories; for example,
a publisher activated 62,190 accounts in only five days.
Profit logic. Our research further explores the profit mecha-
nisms behind RepSEO (Section V). Our detailed case study
reveals traditional cybercrimes are using the new attack vector.
We have identified two main types of advertisers: survey-based
aggressive advertisers and malware distribution advertisers.
The former use online surveys to lure victims into revealing
personal information, then entangle them in different scams.
The latter advertisers spread Trojan malware, often linked with
regularly updated Command and Control (C&C) servers.
Mitigations and disclosure. To assist open-source community
in combating RepSEO, we offer more than just an analysis of
the abuse. We suggest mitigation strategies for different roles
and supply chains, including examining accounts with non-
reputable email providers, monitoring accounts that upload

1“Package” in this paper includes npm package, NuGet package, and
Docker image.

Publisher

Software Repository

Advertiser

Build &
PublishOffer

RepSEO Package VictimAccount
Provider

Access

1

Landing Page

Public/Malicious
Redirect Service

2

3

4 5

6

Fig. 2. Ecosystem of RepSEO. Advertisers may use redirect services to
wrap landing pages. Publishers build and publish abusive packages involving
promotion links, attracting victims to visit the homepage and access the
landing pages.

packages quickly, and using detection methods for RepSEO
packages. We have reported our findings and supply chain vul-
nerabilities to npm, NuGet, Docker Hub, and Google. These
entities have acknowledged our reports and begun removing
the identified RepSEO packages and links (Section VI).
Contributions. This paper makes the following contributions:
• This is the first systematic study to identify and report on
a novel attack vector, termed “blackhat Search Engine Opti-
mization through REPositories (RepSEO)”, in which attackers
carefully craft packages to manipulate search engine results.
• We developed a detection tool and made a comprehen-
sive measurement study over a ten-year dataset, uncovering
3,801,682 RepSEO packages, representing 22.25% of the total
packages.
• Our study provides detailed insights into the supply chain
tactics of the attacks, uncovering strategies used by account
providers, advertisers, and publishers.
• We also examine the profit-making strategies of the attackers,
identifying two predominant types: survey-based advertisers
and malware distribution advertisers.
• We release our code and data at [12] to help future research.

II. METHODOLOGY

In this section, we initially delineate the key roles in-
volved in RepSEO and illustrate its operational workflows.
Subsequently, we describe the detection tool and supply chain
analysis method.

A. Overview

In this study, we delve into attackers’ operational pipeline
for promoting illicit operations, such as unlicensed online
pharmacies and online survey scams, through open-source
software repositories like npm and NuGet.
Threat model. We assume attackers can easily create or
acquire numerous accounts within software repositories with-
out breaching network security. They abuse the software
repositories to publish packages embedded with promotional
content. The attackers can tailor this content, altering both the
descriptive information and the code itself.

Supply chain. We pinpointed three key participants in the
construction of these packages:
• Account Provider: Software repositories require the users to
log in before uploading packages. Account providers register
numerous accounts by exploiting legitimate email services or
setting up dedicated email systems, facilitating attackers in
publishing abusive packages.
• Advertiser: They generate promotion links, which are de-
signed to entice users and lead to potential security or privacy
threats, e.g., ransomware attacks or data breaches. Then, they
handle the links to the publishers.
• Publisher: Publishers disseminate packages containing pro-
motion links from advertisers, using accounts provided by
account providers. They create deceptive packages to trick
search engines and entice users into clicking on these links.
Workflows. The RepSEO attack starts when a publisher
acquires numerous accounts from an account provider (➊).
Advertisers create landing pages for profit schemes like scams
or malware distribution and may use redirect services to evade
detection (➋). They provide promotion links to the publisher
(➌), who embeds these links in packages and publishes them
on repositories like npm and NuGet (➍). Once these stages
are set, the attack unfolds: victims searching for SEO-targeted
keywords find RepSEO packages in top search results (➎).
Clicking these links redirects them to landing pages, posing
security risks such as scams and malware installation (➏).

B. RepSEO Package Detection

Detecting RepSEO is challenging due to the lack of ex-
isting methodologies. Traditional techniques focus on mali-
cious packages compromising operating systems, such as ran-
somware, spyware, or cryptojacking [13, 14, 9, 15]. However,
RepSEO packages typically do not interact with sensitive
system APIs, which these methods rely on. Additionally,
RepSEO packages are spread across popular software reposito-
ries, which are designed for different programming languages
and purposes, requiring distinct approaches to model abusive
behavior. Developing a universal and robust detection method-
ology is essential to ensure comprehensive protection.

Our insight is based on the understanding that search
engines predominantly index the descriptive content of web-
pages. Consequently, RepSEO attackers strategically manipu-
late this descriptive content of the packages to promote their
targeted links. Search engines, aiming to balance the trade-off
between cost and information collection, prioritize indexing
the homepage, such as project introduction and tags, while
overlooking other content. As a result, RepSEO packages
often prominently display illicit promotional content distinct
from other packages on their homepage. Their usage of links,
especially short and unpopular links, is also distinct for high-
lighting of promotion links. Furthermore, the RepSEO package
introduction may remain in HTML syntax when migrated from
traditional SEO webpages. These distinguishing characteristics
help us to construct an effective detection method.
Architecture. Fig. 3 illustrates the process of our method-
ology. Overall, we first collect a broad spectrum of package

Data Source

RepSEO Package Detector

Features

Structure

Link

Semantics

Metadata

History

User

Metadata

Package files

Crawler Supply Chain Analyzer

Classifier

RepSEO Packages Publisher

Promotion Link

Stylometry Similarity

Account

Clickability

Fig. 3. Methodology overview. We begin by collecting packages on software
repositories, then detect abusive packages using a learning approach. Next,
we extract the abusive accounts, identify promotion links by clickability, and
detect the publishers by measuring stylometry similarity of accounts. The
details of feature engineering and feature selection can be found in [12].

TABLE I
FEATURE SET OF THE ABUSIVE PACKAGE DETECTION, WHICH CONTAINS

16 FEATURES SPANNING FIVE DIFFERENT CATEGORIES.

Type Feature Data Type Length

Structure

of directories int 1
Presence of introduction boolean 1

Usage of HTML formatting boolean 1
Presence of code blocks boolean 1

Semantic Platform semantic distances float 10

Link

Ratio of internal links float 1
Domain diversity of external links int 1

Ratio of short links float 1
Avg. rank of external domains float 1

Duplication of links int 1

Metadata

Copyright license boolean 1
Official package boolean 1
Repository URL boolean 1
Homepage URL boolean 1

Domain rank of homepage URL float 1
of Download int 1

Historical User historical behavior float 25

information (e.g., package files, metadata, and maintainer). We
then built a classification method to discover abusive packages
in software repositories, which includes features from five
aspects: structure, semantics, links, metadata, and historical
behavior. Table I lists the full features we used, and we leave
the details of feature selection and definition in [12].

Using these features, we trained a Random Forest model to
classify the abusive packages over the ground truth dataset.
Random Forest is an ensemble method combining multiple
decision trees, each trained on a random subset of data
and features, and makes predictions by majority voting. This
random selection helps prevent overfitting, making it suitable
for our dataset.

C. Supply Chain Analysis

Upon identifying RepSEO packages, a critical question
emerges: how are such abusive packages developed, and who
contributes to their creation and publishing? To understand the
supply chain of RepSEO, we conduct an in-depth analysis of
the three key participants.

1) Account Provider: During registration on software
repositories, attackers usually use disposable or free email
addresses. Identifying commonly used providers helps soft-
ware repositories enhance account registration security, and
prompt free email services to increase registration thresholds.
We extract the maintainer emails in metadata from repositories
and use a public email provider list [16] to distinguish public
and private email providers.

2) Promotion Link: Identifying embedded promotion links
in RepSEO packages poses a significant challenge. Simply
finding hyperlinks in package descriptions is inadequate, as
these packages often contain links for various purposes.

Our approach to distinguishing promotional links is based
on their design to capture user attention and encourage clicks.
Unlike manual copy-paste links, promotional links are typi-
cally made clickable to facilitate easier user interaction. Thus,
we classify clickable links as potential promotional links.

To identify these links, we analyze clickable patterns in
software repositories. For instance, on certain platforms (e.g.,
Docker Hub), where content is rendered as HTML, we identify
clickable elements using HTML standards [17] and use regular
expressions to search for them systematically.

To monitor post-clicking promotion link activities, we use
Puppeteer [18] and CDPSession [19] to capture all network
requests associated with each promotional link and reconstruct
the redirection sequence by request timestamps.

3) Publisher: Publishers create RepSEO packages by em-
bedding promotional links and deceptive descriptive content.
Understanding publishers is vital for both evading detection
and enhancing preventive measures by software repositories.

Our analysis observes that publishers employ distinct writ-
ing styles and semantic mutation strategies to evade repository
detection when creating multiple advertisement copies, with
identifiable styles based on specific linguistic preferences.

Stylometry analysis is widely used in identifying the same
entity behind different accounts [20, 21, 22]. We use the same
method in [20] and customize the text feature by using the
hidden state of bert [23] and the vocabulary richness feature
by the ratio of unique words to the total number of words in the
text. To identify similarities in posting patterns among different
accounts, we normalize and average the feature vectors of
packages for each account, as the writing style feature vector
for that account. We then cluster the account vectors using
HDBSCAN [24] to identify publishers.

D. Implementation

To assess our detection tool’s effectiveness, we gath-
ered data from three representative software repositories: the
JavaScript package manager (npm), the .NET platform NuGet,
and the image shipping and deploying platform Docker Hub.
Groundtruth dataset. For benign samples, we acquire the
top 9,000 download packages on each platform, and verify
1,000 benign packages with 0 downloads to avoid misclassi-
fying low-popularity packages. As for the malicious RepSEO
dataset, we construct it with an unbiased and diverse approach
by using representative keywords. We extracted keywords

from a previous NuGet report [25], which identified abusive
NuGet packages using ad-hoc rules, by term frequency, and in-
corporated common illicit terms from previous SEO work [26].
This resulted in 52 search keywords covering 10 SEO cate-
gories mentioned in [27, 28, 29, 30]. For each keyword, we
crawled the top 250 search results in software repositories,
manually annotating and randomly selecting 10,000 samples to
construct our malicious dataset. Three experts jointly reviewed
100 randomly selected packages (1% of the total) from each
of the three software repositories, establishing a consistent
standard based on whether packages direct users to external
sites without executable code. They then spent around 90
hours independently annotating the rest and measured inter-
rater reliability using Krippendorff’s alpha, achieving a high
score of 0.97, indicating strong agreement [31].
Feature selection. In pursuit of accurately identifying abusive
packages on each platform, we tailor our experimental setup
to align with the distinct characteristics of each platform.
• Structural features. For npm, we scan the rendered
Readme.md/README.md file, which serves as the package
introduction. For NuGet, we scan the description field
of the nuspec file and the Readme.md file for as intro-
duction. Some packages only have a nuspec file without
Readme.md. Within Docker Hub, data is derived solely from
the web, including short and full descriptions, leaving the total
number of files unknown.
• Metadata features. For npm and NuGet, we extract their
metadata from their files, including license, repository URL,
and homepage URL. For Docker Hub, we check if they are
official packages and use their download numbers.
• Historical behavioral features. We consider the historical
feature as the feature vectors of the two packages preceding
the current package, belonging to the same user. We retrieve
the uploader details of npm packages from the namespace field
of the metadata, obtaining the feature vectors of the two prior
packages from the same uploader as the current package. For
NuGet and Docker Hub, we retrieve the uploader details of
NuGet packages from the authors field of the metadata.
Training. Then, we train a Random Forest model with
n estimator=100, employing a 4:1 split for training and testing
sets. Subsequently, we refine the iterative training set by
implementing a hard negative case mining method.

E. Evaluation

According to the optimal model, we assess the effectiveness
of our abusive package mining approach on the ground truth
dataset through 5-fold cross-validation. Our method yielded
an average precision and recall of 98.27% and 98.24%.

To verify real-world performance, we compiled a compre-
hensive dataset with three parts: 1) 500 randomly chosen
RepSEO samples, 2) 500 randomly chosen benign samples,
and 3) 500 newly uploaded benign packages with zero down-
loads for potential popularity bias. For three software reposi-
tories, we collected 4,500 samples as our real-world dataset.

We find six false positives and 45 false negatives in 4,500
selected cases. Specifically, the six FPs occur because both

100%

90%

80%

(23, 95%)

0 5 10 15 20 25 30 35 40
0%

10%

20%

30%

of feature bits removed

Accuracy False Negative Rate False Positive Rate

Fig. 4. Drop-off in RepSEO classifier performance when removing the most
important feature gradually and re-training.

the textual content and links in their descriptive content are
inadequate. Also, we found no FPs in the new packages. As
for the FNs, six cases involve malicious software downloads,
guiding users to download and install Android applications,
with semantics closely resembling legitimate packages. Ad-
ditionally, 10 promotion links were erroneously integrated
with repo links, turning them into benign links and failing
to reach the promotion destination, and 29 FNs resulted from
insufficient text in the descriptions. Overall, our approach
attains an average precision and recall of 99.67% and 97.59%
in 4,500 manually labeled samples.

To ensure our method does not overly rely on a limited
subset of powerful features, we studied the decay of model
performance as we iteratively removed the most important
features. We determine the importance of each feature by
iteratively removing it, retraining, and evaluating performance.
Fig. 4 shows the decrease in accuracy and increase in FPR
and FNR as features are removed. Even after removing 23 top
feature bits, our classifier still achieves 95% accuracy.

To assess the validity of treating clickable links as pro-
motional, we randomly select 20 RepSEO packages in each
repository. By manually labeling 264 links from them, we
achieved 100% precision and 94.31% recall, with all false
negatives being plain text links without clickable tags.

III. BREAKDOWN OF REPSEO

In this section, we conduct the first large-scale measurement
study, to gain a comprehensive understanding of blackhat SEO
practices in software repositories.
Dataset. We collected a substantial dataset using special-
ized crawlers for npm and NuGet, following a methodol-
ogy inspired by prior work [32]. The method involves daily
monitoring for updates in package index files, followed by
acquiring packages and their metadata. For Docker images,
we implemented a customized web crawler using the Docker
Hub API described in [33]. Our dataset, covering a wide range
of versions as shown in Table II, spans from 2011/01/07 to
2024/03/31 and totals approximately 52.6 terabytes.

TABLE II
OVERVIEW OF ABUSIVE PACKAGES DETECTED ACROSS THREE SOFTWARE

REPOSITORIES, WITH DATA COLLECTION CONCLUDING IN 2024/03.

Software Repository Start Time # P1 # RP2 % RP3

npm [1] 2013/01 3,990,172 929,614 23.30%
NuGet [2] 2011/01 660,194 146,495 22.19%

Docker Hub [3] 2013/04 12,437,277 2,725,573 21.91%

Total - 17,087,643 3,801,682 22.25%
1 Number of packages.
2 Number of RepSEO packages.
3 Ratio of RepSEO packages.

Jan
2011

Jan
2012

Jan
2013

Jan
2014

Jan
2015

Jan
2016

Jan
2017

Jan
2018

Jan
2019

Jan
2020

Jan
2021

Jan
2022

Jan
2023

Jan
2024

Time span

0.0

2.0

4.0

6.0

of

 p
ac

ka
ge

s

1e5 (a) npm
Total
Abusive

Jan
2011

Jan
2012

Jan
2013

Jan
2014

Jan
2015

Jan
2016

Jan
2017

Jan
2018

Jan
2019

Jan
2020

Jan
2021

Jan
2022

Jan
2023

Jan
2024

Time span

0.0

2.0

4.0

6.0

of

 p
ac

ka
ge

s

1e4 (b) NuGet
Total
Abusive

Jan
2011

Jan
2012

Jan
2013

Jan
2014

Jan
2015

Jan
2016

Jan
2017

Jan
2018

Jan
2019

Jan
2020

Jan
2021

Jan
2022

Jan
2023

Jan
2024

Time span

0.0

2.0

4.0

6.0

8.0

of

 p
ac

ka
ge

s

1e5 (c) Docker Hub
Total
Abusive

Fig. 5. Evolution of RepSEO packages.

Landscape. Our detection approach applied to 17,087,643
packages, and identified 3,801,682 RepSEO packages on npm,
NuGet, and Docker Hub, showing that 22.25% packages
are abusive, revealing widespread abuse. Table II shows the
distribution of RepSEO packages across the three software
repositories. Docker Hub has the highest number (2,725,573)
of abusive packages, followed by npm and NuGet. This preva-
lence strains the storage resources of software repositories
and their mirrors, amplifying RepSEO’s damage. Even if the
official software repository removes packages, mirrors may not
follow suit [32], allowing RepSEO’s impact to persist.
Longitudinal study. Based on the version history of packages,
we analyze the timeline of this abuse in Fig. 5. We locate the
package creation time according to the metadata offered by the
software repositories. Specifically, we use the “time” field in
npm, “published” field in NuGet, and “date registered” field

Jan
2011

Mar
2013

May
2015

Jul
2017

Sep
2019

Nov
2021

Jan
2024

Time span

0.0

1.2

2.4

3.6

of

 p
ac

ka
ge

s
1e6

(a) npm - full range

Non-Abusive Alive Removed

Mar
01

Mar
21

Apr
10

Apr
30

May
20

Jun
09

Jun
29

Jul
19

Time span

2.4

2.8

3.2

3.6

of

 p
ac

ka
ge

s

1e6

(b) npm - 2023

Jan
2011

Mar
2013

May
2015

Jul
2017

Sep
2019

Nov
2021

Jan
2024

Time span

0.0

2.0

4.0

6.0

of

 p
ac

ka
ge

s

1e5

(c) NuGet - full range

Jan
01

Jan
08

Jan
15

Jan
22

Jan
29

Feb
05

Feb
12

Feb
19

Feb
26

Time span

3.7

4.2

4.7

5.2

of

 p
ac

ka
ge

s

1e5

(d) NuGet - 2022

Fig. 6. Lifespan evolution of RepSEO packages on npm and NuGet.

in Docker Hub. The earliest RepSEO package was in 2016/11
for NuGet, 2017/11 for npm, and 2017/04 for Docker Hub.

Interestingly, our study reveals significant spikes in RepSEO
package uploads across various software repositories. From
2020/12 to 2021/08, there was a significant rise in abusive
Docker images, peaking in 2021/05 with 693,434 images,
constituting 85.02% of the uploads that month. Another peak
occurred in 2023/08, with 352,496 RepSEO images. A similar
trend was observed in npm and NuGet, with 92.07% of npm
packages uploaded in 2023/03 and 90.76% of NuGet packages
uploaded in 2022/01 being abusive.

Finding I: All spikes in the total number of packages in
software repositories (2023/03 of npm, 2022/01-2022/02 of
NuGet, 2021/01-2021/05 and 2023/08 of Docker Hub) have
coincided with increases in RepSEO.

Lifespan. Facing RepSEO attacks, concerns arise regarding
software repositories’ action and attack duration. We introduce
package lifespan as a metric, capturing the time between
package upload and software repository removal.

To identify the removal time of packages, we leverage the
metadata API provided by the software repositories. For npm
packages, we check the “unpublished” field and extract its
timestamp as the removal time. For NuGet, we examine the
catalog of each package. If the “listed” field is false, we record
its “lastEdited” time as the removal time. We then calculate
each package’s lifespan by subtracting the upload time from
the removal time. The maximum lifespan of RepSEO package
is 2,210 days for npm and 1,775 days for NuGet.

We then measure the change in software repository re-
sponse time (Fig. 6). For example, npm noticed the large-
scale uploading of abusive packages 4 months after the event
occurred, starting remedial actions in 2023/07. Notably, npm
has improved its response time, reducing the lifespan of
abusive packages from 73 months initially to the current 2.5
hours, indicating effective measures.

Unfortunately, all abusive images were still present on
Docker Hub before we reported, with an average lifespan
of 952.58 days. Even if Docker Hub claim they have imple-
mented an image security mechanism, they does not take the
RepSEO into account.

TABLE III
TOP FIVE ABUSIVE ACCOUNTS BY THE NUMBER OF PACKAGES.

Software Repository Username # of Packages

npm

linuxmooerktjmt 80,019
cikvoroooeiiei 47,391

jfeifieikkjdkejde334 43,093
vreopppproo23 36,441
npmpublishq 34,361

NuGet

nDFE 10,730
GAMES 2,601

David 2,127
Allen 1,623

Williams 1,385

Docker Hub

scofuterag1988 2,262
ralicalfa1982 1,190

fasisasdai1987 1,187
skiptentida1988 1,187
steadolunet1989 1,186

IV. UNDERSTANDING THE SUPPLY CHAIN OF REPSEO

This section details the architecture of RepSEO supply
chain stakeholders: accounts, promotion links, and publishers.

A. Accounts

The cornerstone of RepSEO is the creation of malicious
accounts specifically for mass uploading promotion content.
By retrieving account information from metadata, we found
30,981, 84,851, and 140,114 unique abusive accounts in npm,
NuGet, and Docker Hub, respectively. Table III shows the
users with the most RepSEO packages.
Account usage strategy. We found that account registra-
tion cost significantly impacts abusive package utilization, as
shown in Fig. 7. 89.12% accounts in NuGet and 90.93% in
Docker Hub only upload one package before abandonment,
while only 37.62% npm accounts choose this strategy. In npm,
we observed a radical strategy involving a small number of
accounts uploading many packages—up to 80,019—without
concern for attracting attention. Specifically, 54.17% of npm
abusive packages are uploaded by just 1.12% of accounts.

The difference in account usage strategies may be at-
tributed to npm’s implementation of Multi-Factor Authentica-
tion (MFA) [34] for login authentication in 2022. Since npm’s
abuse peak occurred with MFA while Docker Hub and NuGet

0 40 80 120 160 200
Packages per account

0.00

0.25

0.50

0.75

1.00

%
 o

f a
cc

ou
nt

s

(1, 37.62%)

(a) npm

0 5 10 15 20 25 30
Packages per account

0.00

0.25

0.50

0.75

1.00

%
 o

f a
cc

ou
nt

s

(1, 89.12%)

(b) NuGet

0 5 10 15 20 25 30
Packages per account

0.00

0.25

0.50

0.75

1.00

%
 o

f a
cc

ou
nt

s

(1, 90.93%)

(c) Docker Hub

Fig. 7. CDF of packages per account. We found that 89.12% account in (b)
and 90.93% in (c) only uploaded one package, while in (a) is 37.62%.

did not, acquiring and utilizing bulk accounts may have been
more challenging compared to Docker Hub and NuGet.
Email provider. Account registration cost is linked to the
feasibility of automating email account creation. Registration
methods differ across platforms, including Microsoft and
GitHub accounts, but commonly require email verification.
We focus on npm’s email service providers, as only npm can
access uploader email accounts.

Attackers used 53 free public email services, with Gmail
being the most abused, resulting in 4,843 accounts and 475,079
abusive packages. Anonymous registration services like pro-
ton.me were also abused for greater concealment.

Attackers also registered accounts by 734 private email
providers. pay-exchange.tech and pdflivres.com are prominent,
with 4,395 and 2,299 accounts, contributing to 84,071 and
57,786 abusive packages, comprising about 15.26% of total
npm abuses. We recommend software repositories implement
stricter auditing strategies for private email registrations.

Finding II: Attackers abuse public email service and deploy
self-hosted email services to register numerous accounts on
software repositories.

Hibernated accounts. Additionally, we discovered that a
group of hibernated accounts resumes RepSEO activities after
a certain period of inactivity. 3,247 accounts resume publishing
RepSEO images after over two years in Docker Hub, with
each account uploading more than 100 RepSEO images. Fur-
thermore, in NuGet, we have identified four accounts named
David (first package in 2015), Allen (2015), Nelson (2017),
and James (2020), who became active again after years of
hibernation. Their packages uploaded initially were legitimate,
but after several years, they started uploading RepSEO pack-
ages in 2021. This suggests the possibility of account theft or
illicit trading. As npm forced MFA login authentication [34],
we did not encounter similar situations within npm.

TABLE IV
TOP 10 UNDERGROUND URL SHORTENING SERVICES.

Domain # of Links Ratio of Dataset

picfs.com 166,694 6.27%
fancli.com 158,748 5.97%
blltly.com 156,843 5.90%

tlniurl.com 155,275 5.84%
bytlly.com 155,014 5.83%
tiurll.com 154,444 5.81%

geags.com 152,920 5.75%
imgfil.com 152,226 5.73%
urluss.com 24,544 0.92%
urlca.com 24,520 0.92%

Finding III: Attackers reactive hibernated accounts, origi-
nally used for legitimate packages, to upload RepSEO pack-
ages, indicating possible account theft or illicit trading.

B. Promotion Links

The publisher embeds promotional links in abusive pack-
ages as the attack payload to lure clicks. Here we investi-
gate the infrastructure of 9,924,230 promotion links found in
RepSEO packages, including the destinations, evasion tech-
niques, and the presence of malicious parties. In these links,
35.63% were inaccessible. Among the accessible, 38.87% led
directly to landing pages, and 61.13% involved redirections.

We investigated if redirection links were attacker-created or
involved third parties. Self-hosted services usually redirect to
a single domain, while third-party services point to multiple
destinations. We found 2,761,642 promotion links led to mul-
tiple destinations, with only 17.90% (1,143,428 links) pointing
to a single SLD.

To identify services that potentially (ab)use links redirecting
through multiple destinations, we first filter out the public short
links based on a public URL shortener domain list [35]. Then,
if the destination domain is contained within the promotion
links and the destination domain ranks within the Tranco [36]
top 500k, we classify it private redirect service. All remaining
links are categorized as “others”.
Public URL shortening services. Of the 3,905,070 promotion
links involving redirections, 103,871 (57.17%, 41.58%, and
0.82% from t.co, bit.ly, and tinyurl.com, respectively) were
short links, distributed across 41,982 npm packages, 16 NuGet
packages, and 59,000 Docker images. Notably, bit.ly claims to
have a spam link filtering system, but is still heavily exploited,
indicating the insufficiency of its spam filtering system.

Finding IV: The security mechanism of public URL short-
ening services is insufficient to avoid attackers abusing such
service on RepSEO.

Underground URL shortening services. Among the remain-
ing links, we found that 1,582,670 links (59.55%) from 211
domains were flagged as malicious by at least one engine
on VirusTotal [37]. After manually inspecting the malicious
domains, we found they were URL shortening services. Some

of them have a similar domain name (typosquatting) with
a public reputable URL shortening service, i.e., blltly.com
v.s. bitly.com. We discovered 32 of the domains that provide
underground URL shortening services, as shown in Table IV.

Additionally, we observed that underground shorteners pro-
vide more evasion techniques along with URL redirection.
For instance, tiurll.com dynamically generates unique links for
each user. Moreover, tinybit.cc uses JavaScript for dynamic
page loading to hide landing pages. These methods allow
attackers greater control over the redirection process.

Finding V: Attackers increasingly rely on underground URL
shortening services equipped with evasion techniques, like
dynamic redirection, to configure their landing pages.

Private redirect services. In the remaining links, we have
also identified a new form of abuse targeting private redirect
services. 4,681 unique links abuse redirect services from 23
domains like www.google.com, cse.google.bg, www.folkd.com.
These services, like the Google Search example
https://www.google.com/url?q=https%3A%2F%2Fbltlly.com%
2F2vw1VP, track clicks and sources for ad campaign analysis,
usually store the redirect link in the parameters of the service
API. When users click on these links, they are redirected
to the target URL https://bltlly.com/2vw1VP, which leads to
a malware download page. Notably, eight Google domains
are heavily abused, generating 4,658 unique links. This
tactic allows promotional links to appear as credible Google
domains, evading domain-based security measures.

Finding VI: Attackers abuse private redirect service of rep-
utable companies, i.e., Google, to redirect RepSEO landing
pages.

Intermediate redirections. We tracked traffic from promotion
links to landing pages and found that 54.48% links used multi-
ple redirections to hide their true destination, with the highest
number reaching 17. The 301 redirection is consistently em-
ployed across 17 intermediate domains, such as sadisflix.bet,
coflix.loan, and filmoflix.host, maintaining an unchanged path.
Additionally, 807,637 links were first redirected to Cloudflare
before reaching the landing page, indicating its use to hide
the true origin or improve security and performance. Some
links also generate a new landing page link with each visit for
human verification, even if the final page remains the same.

Finding VII: Attackers employ multi-layer redirects (up to
17), along with human verification and firewalls to ensure
that only human visitors can access landing pages.

C. Publishers

As creators of abusive packages, publishers utilize their
expertise and resources to maliciously embed promotion links
to attract user clicks and interactions with the links. We
identified 226 publishers across software repositories: 205 in
npm, 17 in NuGet, and five in Docker Hub. The number

of promotion links integrated by publishers varies, the most
aggressive publishers embed 21.5 unique links per package on
average, comparing 2.2 links per package to others.
Publishing capability. Publishers exhibit a strong capacity to
publish numerous packages, with 36 publishers releasing over
a thousand each. The largest published 1,020,637 packages
in five months (2021/01/15 to 2021/06/03), accounting for
8.21% of all packages on Docker Hub, while another released
390,390 packages in one month (2023/03/25 to 2023/04/21) on
npm. The number of accounts activated in a short period also
reflects a publisher’s ability. Using the release time of the first
package as the activation time, we identified 13 publishers that
activated over 100 accounts each. For example, on NuGet, one
publisher activated 62,190 accounts in five days (2022/02/11
to 2022/02/15), and on npm, another publisher activated 3,814
accounts on 2023/04/21.

Finding VIII: Aggressive publishers can quickly deploy
attacks, activating up to 62,190 accounts in just five days.

Package names. The RepSEO package names are de-
signed to explicitly indicate the purpose of the con-
tent within the package. For instance, an package named
“down load ebook sundhaftes geheimnis by sawyer benn
ett dzlrs” informs users that they can download an ebook
titled “Sundhaftes Geheimnis” written by Sawyer Bennett. To
optimize RepSEO package generation, creating a substantial
quantity of package names is crucial. We witness three pri-
mary mutation methods for name generation: 1) employing
variations that maintain semantic meaning, like “down load”
and “dowload” for “download”; 2) appending unique random
strings, like “dzlrs”, to extend a name; and 3) substituting and
rearranging similar words.

Finding IX: The attacks frequently mutate package meta-
data to bypass repository potential detection and improve
the coverage of search engine queries.

V. CASE STUDY

In this section, we demonstrate two aggressive RepSEO
campaigns, which together account for 58.51% of abusive
packages. These cases aim to uncover the underlying technical
architecture and profit logic driving such campaigns.

A. Survey-based Aggressive Advertisers

We identified an aggressive survey-based [38] scam adver-
tiser campaign on Docker Hub. These advertisers direct users
to click on fake download links for e-books or software, lead-
ing them to survey platforms offering monetary rewards, where
users may be coerced into divulging personal information.
Profit logic. Fig. 8 illustrates the advertiser’s promotion
process, encompassing four stages. ➊ Upon clicking the
promotion link, users reach a human verification page (e.g.,
verif.za.com), confirming an operational PayPal account. If
absent, users are prompted to register for a platform account.
➋ At the Register stage (e.g., app.rewardflux.com), users are

Verify

Register Survey

Deal

Optional

LotteryGambling

Gift Card Insurance

Survey

Fig. 8. The process of survey-based advertiser promotion.

Fig. 9. The task distribution portal page of a survey-based advertiser.

required to disclose their financial status, including their hous-
ing situation. Also, users be asked to provide their name, email
address, and address, which may lead to sensitive privacy
leakage. ➌ In the Survey stage, users are asked enticing
questions like “Are you interested in online gambling?” to
encourage questionnaire completion for a “gift card”. ➍ In
the Deal stage, users enter a task distribution portal (Fig. 9)
where they must complete at least one task, including online
gambling, gift card acquisition, and health insurance purchase,
all requiring card account information. These portals also
link to other survey-based platforms. However, even if users
complete the sub-task, they will not receive the “gift card”,
but divulge their personal information.
Advertiser patterns. This campaign includes 1,334,307 abu-
sive packages, spanning from 2021/01/15 to 2021/06/18. Be-
fore 2021/06/03, 971 accounts were using ebooks to attract
victims, after that, the topic changed to software downloads,
and another 272 accounts with similar usernames are activated.
Each account uploads about 628 packages, with all the links
leading to the survey platform.

Finding X: RepSEO attackers distribute survey scams,
tricking users into providing sensitive information by
promising gift cards, and lead to other scams.

B. Malware Distribution Advertisers

We also detect massive abusive packages utilized for mal-
ware distribution on software repositories. These packages

disguise themselves as convenient file download channels
instead of directly providing identifiable malware [39].
Profit logic. The malware distribution process is concise:
users, clicking promotional links, first encounter a short
link redirecting them to a human verification interface. Mal-
ware is concealed within zip files named after the user’s
interest, like Tamil-Dubbed-Movies-Free-Download-In-720p-
English.zip. After passing verification, users are directed to
a download instruction page with the unzip password. Such
password is a social engineering trick to downgrade user
awareness. The downloaded file, identified as a Trojan virus,
establishes a botnet by altering repository keys and disabling
system security tools, allowing malicious software downloads
from the C&C server.
Advertiser patterns. This campaign includes 890,201 abusive
packages, released by 5,395 accounts from 2018/01/06 to
2023/08/22. Two peaks were observed during this period:
in three days after 2020/12/11, 2,291 accounts were created
and released 587,947 abusive packages; and in one day of
2021/04/17, 1,959 accounts were created to release 150,028
packages.

For this campaign, the advertiser uploads multiple packages
simultaneously with varying attractive titles, to lure users to
download diverse kinds of files, such as mp3, movie, and
APK. Victims, after clicking RepSEO webpages, are all guided
towards the download of the Trojan virus called file 1234 with
password 1234.

The advertising strategy has evolved. Two years ago, abu-
sive packages used private short links and static HTML
“Download” buttons, with some failing due to rendering errors.
This year, packages use improved rendering and google.com
for redirecting promotional links to bypass mitigation mea-
sures. Short links in abusive packages enable attackers to easily
switch domains, extending their operations. For example,
domains changed from psfmi.com two years ago to ytomb.com
in 2023/08 and ooppnm.com in 2023/11. Given the prevalent
nature of RepSEO, attackers successful on one platform often
attempt cross-platform attacks, as seen in a malware campaign
affecting both npm and NuGet.

Finding XI: Attackers post download links to e-books or
cracked software in software repositories, redirecting users
to malware downloads.

VI. DISCUSSION

In this section, we discuss the security implications, then
propose countermeasures against the emerging threat and
discuss ethical considerations and responsible disclosure.

A. Security Implication

This paper aims to increase awareness of RepSEO within
the open-source community. Despite their few downloads and
dependencies, RepSEO packages significantly impact software
engineering, especially in open-source ecosystems that are
critical to modern development. Their high volume strains
storage resources and they can remain in downstream mirrors

even after upstream removals. While RepSEO packages do
not directly compromise software functionality, they present
notable challenges to reputation and user trust in the soft-
ware ecosystem. More critically, 22.25% of these packages
are noise, complicating data collection and analysis for re-
searchers. Before our report, limited knowledge of RepSEO
has led to 2.7 million RepSEO packages persisting on Docker
Hub. We also witnessed RepSEO in many software reposi-
tories and its downstream mirrors, such as PyPI, replit, and
MyGet, showing their unawareness.

Our work builds on prior blogs and technical reports [40,
41, 42] related to RepSEO, which fall under the category
of grey literature (GL). As noted by Garousi et al. [43],
GL serves as a valuable source of knowledge, particularly
in software engineering, where practitioners often share in-
sights and experiences outside of peer-reviewed publications.
While these prior works provided isolated observations on
RepSEO incidents, they lacked systematic methodologies for
identifying and analyzing such packages and primarily focused
on phishing incidents. By synthesizing and extending this
foundational knowledge, we fill this gap by proposing a
universal and robust RepSEO detection methodology that can
easily adapt to other software repositories and programming
languages, helping them detect RepSEO packages.

Our comprehensive analysis of the underground activities
within the software supply chain has yielded invaluable in-
sights, which provide valuable context for mitigation strategies
in Section VI-B. Notably, we identified private email providers
and underground shortening services as pivotal elements in
the spread of RepSEO. These findings highlight the growing
threat to open-source communities, which are increasingly
targeted by cybercriminals. Addressing this threat is crucial
to maintaining reputation and trust in these platforms. In
response, we have open-sourced our detection methods to help
mitigate the RepSEO threat.

B. Mitigation

Countermeasures. Based on our understanding of RepSEO,
we propose several countermeasures to mitigate this emerging
and underestimated threat. Specifically, (1) software reposi-
tories should strengthen their account management practices,
especially checking accounts registered with non-reputable or
unknown email providers with high occurrence. (2) In addition
to checking for malicious code, the content of uploaded pack-
ages should be examined for suspicious links. Short links are
uncommon in software repositories, thus requiring increased
vigilance. Frequently appearing low-ranking domains across
different packages should also be scrutinized. (3) Monitor ac-
counts that quickly upload many packages or appear simulta-
neously, as they may be linked to the same publisher. Learning
their patterns and promptly removing newly uploaded similar
packages and accounts is crucial. (4) Software repositories can
employ our detection method for RepSEO packages, which
can be easily adopted with minimal effort.
Adapt for other platforms. Our approach uses multiple
features to detect RepSEO packages, allowing software repos-

itories to map these features to their own attributes. Due to
resource limitations, we conducted detections only on three
platforms, but our method can also be applied to others, such
as PyPI, GitHub, and Bitbucket. Using PyPI as an example,
we can leverage the “Project Description” field for extracting
structural, semantic, and link features. The “Metadata.License”
and “Project Links.Homepage” fields can be metadata features.
Notably, our feature engineering primarily focuses on the
promotional project introduction, and the absence of specific
metadata features would not hinder our method’s usability.

C. Limitations

Although our work has uncovered valuable insights into the
RepSEO attacks, it has limitations. We only analyzed three
software repositories due to limited computing resources. With
more resources, we could extend the experiments to other
software repositories, potentially detecting more RepSEO sam-
ples. While our detection method is robust against the current
generation of RepSEO, attackers may eventually find ways
to bypass it. However, we significantly increase the difficulty
for them to do so, raising the cost and effort required.
For instance, reducing the semantic distance to the software
repository prevents user attraction. Also, maintaining a good
historical record is expensive for attackers managing thousands
of RepSEO packages in one account.

We also acknowledge that not all promotional links were
successfully located under our assumptions. However, since
manual evaluation has confirmed that we have identified most
(94.31%) promotional links, we believe that our study has
provided comprehensive insights into the strategies behind
these links, i.e., utilization of underground URL shorteners
and redirection methods.

Another limitation is our inability to directly assess the
monetization of the attacks due to a lack of publicly available
datasets with specific pricing details, restricting our financial
analysis of repository exploitation.

D. Ethics and Disclosure

Ethic concerns. We place a strong emphasis on ethical con-
siderations. To evaluate security issues within software repos-
itories, we maintain continuous monitoring and assessment of
the status of packages in targeted repositories. Notably, all our
experiments were conducted using legitimate methods. The
information we gathered through crawling is publicly available
and can be obtained using authorized approaches. During the
crawling process, as we crawled the packages based on the
changes in the package index, we ensured that the number of
requests made to the software repositories was reasonable and
did not impose excessive strain on their infrastructure.
Disclosure. Since the discovery of blackhat SEO abuse
through software repositories, we have been in active com-
munication with the software repositories affected. So far, we
have reported the abusive packages we found to npm, NuGet,
and Docker Hub. By now, all three repositories have responded
to our report and are offlining related packages.

VII. RELATED WORK

Blackhat SEO. To enhance efficacy in countering blackhat
SEO, multiple studies have been conducted to gain insight into
these practices. Attackers employ a range of tactics to execute
blackhat SEO, including manipulating specific site elements
and exploiting search engine mechanisms. Attackers utilized
search redirection attacks to promote illicit drugs [44, 45] and
used iframe masquerading techniques to promote counterfeit
luxury brands [10], which make it easier to advertise on pre-
existing portal pages. Attackers also exploit autocomplete ma-
nipulation of search queries to generate promotion words [46].

The scope of blackhat SEO has expanded beyond search
engines in recent years, including cloud-based long-tail SEO
spam [47], tweets on the illegal sale of controlled substances
on social media [48], exploitation in Google Maps location
search [49], extended by Wang et al. [30] to detect illegal
drug promotion listings on local search services. From a threat
modeling standpoint, Lin et al. [50] proposed the MAWSEO
method, automating covert blackhat SEO by modifying wiki
articles to promote illicit businesses. In contrast, we focus on
the escalating blackhat SEO ecosystem across various soft-
ware repositories, aiming to identify and summarize abusive
behaviors and understand attackers’ scaling patterns.

In terms of detection techniques, Liao et al. [26] analyzed
infected websites on selected sTLDs via search result snippets’
semantics. [29] developed a jargon normalization algorithm to
track endorsed websites. Besides, SCDS [51] detects blackhat
SEO deception trends through semantic obfuscation by assess-
ing linguistic semantic diversity within websites. Compared
to these techniques based on web search results, our paper
focuses on the single package of the repositories, which is
highly structured. We synthesize a variety of features within
the packages from different dimensions, including but not
limited to semantics and links, to enhance the effectiveness
of this detection method.
Threats on software repositories. Reusable software pack-
ages are a critical component of modern software development.
Security issues within the software supply chain have received
widespread attention. Numerous empirical studies have been
conducted to investigate related ecosystems [13, 52, 14, 8, 15],
addressing specific forms of attacks such as typosquatting [9]
and vulnerable package dependencies [6, 7]. Zimmermann
et al. [52] developed indicators to assess npm’s attack risks,
examining package dependencies, maintainers, and known vul-
nerabilities. Analyzing the metadata of 1.63 million JavaScript
npm packages, Zahan et al. [53] identified signals of security
vulnerabilities, including installation scripts, maintainers with
expired email domains, and inactive packages. Gu et al. [32]
investigated potential vulnerabilities in six popular software
registry ecosystems and identified twelve potential attack vec-
tors. To address potential malicious npm packages, Sejfia and
Schäfer [4] have implemented a lightweight machine learning-
based technology called Amalfi. Previous research focused on
direct malicious behavior, overlooking abusive blackhat SEO
through software repositories due to subtle indicators of intent.

Our study is the first to systematically analyze this new threat,
advancing software supply chain security research.

VIII. CONCLUSION

In this paper, we have a comprehensive analysis of blackhat
SEO through software repositories, named RepSEO, a novel
and emerging threat in the landscape of software supply
chains. Our study unveiled the extensive abuse of popular
platforms such as npm, NuGet, and Docker Hub, where at-
tackers exploit the open-source community’s credibility to ma-
nipulate search engine results through SEO abusive packages.
This investigation led to the discovery of 3,801,682 RepSEO
packages, highlighting the widespread of this attack. We
identified the critical roles of account providers, advertisers,
and publishers in the ecosystem. Our study provides actionable
insights for these software repositories to enhance their secu-
rity mechanism and mitigate such abuses. We have informed
npm, NuGet, and Docker Hub about RepSEO packages and
reported the associated supply chain vulnerabilities to Google.
They have acknowledged this and have begun removing the
abusive packages and links.

ACKNOWLEDGMENT

We would like to thank Ruimin Wang for providing tech-
nical and data assistance for this paper. We also thank the
anonymous reviewers for their insightful comments that helped
improve the quality of the paper. This work was supported
in part by National Natural Science Foundation of China
(62302101, 62102093). Min Yang is the corresponding author,
and a faculty of Shanghai Institute of Intelligent Electronics &
Systems, and Engineering Research Center of Cyber Security
Auditing and Monitoring, Ministry of Education, China.

REFERENCES

[1] I. npm. (2023) Normally pleasant mixture — npm —
home. https://npmjs.com.

[2] Microsoft. (2023) Nuget gallery — home.
https://www.nuget.org/.

[3] I. Docker. (2023) Docker hub container image library.
https://hub.docker.com.

[4] A. Sejfia and M. Schäfer, “Practical automated detection
of malicious npm packages,” in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
2022, pp. 1681–1692.

[5] N. Boucher and R. Anderson, “Trojan source: Invisible
vulnerabilities,” in 32nd USENIX Security Symposium
(USENIX Security 23), Anaheim, CA, Aug. 2023, pp.
6507–6524.

[6] J. C. Davis, E. R. Williamson, and D. Lee, “A sense
of time for JavaScript and node.js: First-Class timeouts
as a cure for event handler poisoning,” in 27th USENIX
Security Symposium (USENIX Security 18), Baltimore,
MD, Aug. 2018, pp. 343–359.

[7] C. Staicu, M. Pradel, and B. Livshits, “SYNODE: under-
standing and automatically preventing injection attacks

on NODE.JS,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018, 2018.

[8] D. L. Vu, I. Pashchenko, F. Massacci, H. Plate, and
A. Sabetta, “Towards using source code repositories to
identify software supply chain attacks,” in CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communica-
tions Security, Virtual Event, USA, November 9-13, 2020,
J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM,
2020, pp. 2093–2095.

[9] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltafor-
maggio, and W. Lee, “Towards measuring supply chain
attacks on package managers for interpreted languages,”
in Proceedings 2021 Network and Distributed System
Security Symposium, 2021.

[10] D. Y. Wang, M. Der, M. Karami, L. Saul, D. McCoy,
S. Savage, and G. M. Voelker, “Search + seizure: The
effectiveness of interventions on seo campaigns,” in
Proceedings of the 2014 Conference on Internet Mea-
surement Conference, New York, NY, USA, 2014, p.
359–372.

[11] K. Thomas, C. Grier, D. Song, and V. Paxson, “Sus-
pended accounts in retrospect: an analysis of twitter
spam,” in Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, 2011,
pp. 243–258.

[12] Anonymous. (2024) Repseo-artifacts.
https://anonymous.4open.science/r/RepSEO Classifer-
FDB5.

[13] A. Decan, T. Mens, and E. Constantinou, “On the impact
of security vulnerabilities in the npm package depen-
dency network,” in Proceedings of the 15th International
Conference on Mining Software Repositories, MSR 2018,
Gothenburg, Sweden, May 28-29, 2018, A. Zaidman,
Y. Kamei, and E. Hill, Eds. ACM, 2018, pp. 181–191.

[14] A. Decan, T. Mens, and P. Grosjean, “An empirical
comparison of dependency network evolution in seven
software packaging ecosystems,” Empir. Softw. Eng.,
vol. 24, no. 1, pp. 381–416, 2019.

[15] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok:
Taxonomy of attacks on open-source software supply
chains,” in 44th IEEE Symposium on Security and Pri-
vacy, SP 2023, San Francisco, CA, USA, May 21-25,
2023. IEEE, 2023, pp. 1509–1526.

[16] ammarshah. (2023) A list of all email provider domains.
https://gist.github.com/ammarshah/f5c2624d767f91a7cbd
c4e54db8dd0bf#file-all email provider domains-txt.

[17] W3C. (2023) Html standard.
https://www.w3.org/TR/2011/WD-html5-20110405/.

[18] Puppeteer. (2020) Puppeteer. Https://pptr.dev/.
[19] cyrus and. (2022) chrome-remote-interface.

Https://github.com/cyrus-and/chrome-remote-interface.
[20] Y. Zhang, Y. Fan, W. Song, S. Hou, Y. Ye, X. Li,

L. Zhao, C. Shi, J. Wang, and Q. Xiong, “Your style your
identity: Leveraging Writing and Photography Styles for
Drug Trafficker Identification in Darknet Markets over

Attributed Heterogeneous Information Network,” in The
World Wide Web Conference, May 2019, pp. 3448–3454.

[21] S. Afroz, A. C. Islam, A. Stolerman, R. Greenstadt, and
D. McCoy, “Doppelgänger Finder: Taking Stylometry to
the Underground,” in 2014 IEEE Symposium on Security
and Privacy, May 2014, pp. 212–226.

[22] P. Chairunnanda, N. Pham, and U. Hengartner, “Pri-
vacy: Gone with the typing! identifying web users by
their typing patterns,” in 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust and
2011 IEEE Third International Conference on Social
Computing, 2011, pp. 974–980.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[24] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierar-
chical density based clustering,” The Journal of Open
Source Software, vol. 2, no. 11, p. 205, 2017.

[25] Jossef. (2023) illustria checkmarx
phishing campaign package list.
https://gist.github.com/jossef/1c1152368ff6210340644f4
4afec7e8e.

[26] X. Liao, K. Yuan, X. Wang, Z. Pei, H. Yang, J. Chen,
H. Duan, K. Du, E. Alowaisheq, S. Alrwais, L. Xing,
and R. Beyah, “Seeking nonsense, looking for trouble:
Efficient promotional-infection detection through seman-
tic inconsistency search,” in 2016 IEEE Symposium on
Security and Privacy (SP), 2016, pp. 707–723.

[27] M. Joslin, N. Li, S. Hao, M. Xue, and H. Zhu, “Measur-
ing and Analyzing Search Engine Poisoning of Linguistic
Collisions,” in 2019 IEEE Symposium on Security and
Privacy (SP), May 2019, pp. 1311–1325.

[28] L. Lu, R. Perdisci, and W. Lee, “Surf: detecting and
measuring search poisoning,” in Proceedings of the 18th
ACM conference on Computer and communications se-
curity, New York, NY, USA, Oct. 2011, pp. 467–476.

[29] R. Yang, X. Wang, C. Chi, D. Wang, J. He, S. Pang,
and W. C. Lau, “Scalable detection of promotional
website defacements in black hat SEO campaigns,” in
30th USENIX Security Symposium (USENIX Security
21), Aug. 2021, pp. 3703–3720.

[30] P. Wang, Z. Lin, X. Liao, and X. Wang, “Demystifying
local business search poisoning for illicit drug promo-
tion,” in 29th Annual Network and Distributed System
Security Symposium, NDSS 2022, San Diego, California,
USA, April 24-28, 2022. The Internet Society, 2022.

[31] A. F. Hayes and K. Krippendorff, “Answering the call for
a standard reliability measure for coding data,” Commu-
nication methods and measures, vol. 1, no. 1, pp. 77–89,
2007.

[32] Y. Gu, L. Ying, Y. Pu, X. Hu, H. Chai, R. Wang, X. Gao,
and H. Duan, “Investigating package related security
threats in software registries,” in 44th IEEE Symposium
on Security and Privacy, SP 2023, San Francisco, CA,
USA, May 21-25, 2023. IEEE, 2023, pp. 1578–1595.

[33] pedrorijo91. (2019) Api to get top docker hub images.
https://stackoverflow.com/questions/38070798/where-is-
the-new-docker-hub-api-documentation.

[34] GitHub. (2023) All npm accounts are now enrolled in
login verification. https://github.blog/changelog/2022-
03-01-all-npm-accounts-are-now-enrolled-in-login-
verification/.

[35] A. Neumann, J. Barnickel, and U. Meyer.
(2011) Security and privacy implications
of url shortening services. https://www.ieee-
security.org/TC/W2SP/2011/papers/w2sp-urlShortening-
slides.pdf.

[36] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen, “Tranco: A research-
oriented top sites ranking hardened against manipula-
tion,” in Proceedings of the 24th Network and Distributed
System Security Symposium (NDSS), 2019.

[37] VirusTotal. (2020) Virustotal.
https://www.virustotal.com/.

[38] A. Kharraz, W. Robertson, and E. Kirda, “Surveylance:
Automatically detecting online survey scams,” in Pro-
ceedings of the 39th IEEE Symposium on Security and
Privacy (S&P), 2018, pp. 70–86.

[39] P. Vadrevu and R. Perdisci, “What You See is NOT What
You Get: Discovering and Tracking Social Engineering
Attack Campaigns,” in Proceedings of the Internet Mea-
surement Conference, ser. IMC ’19. New York, NY,
USA: Association for Computing Machinery, Oct. 2019,
pp. 308–321.

[40] J. Harush. (2022) How 140k nuget, npm, and
pypi packages were used to spread phishing links.
https://checkmarx.com/blog/how-140k-nuget-npm-and-
pypi-packages-were-used-to-spread-phishing-links/.

[41] Y. Gelb. (2023) How npm packages were used to
spread phishing links. https://checkmarx.com/blog/how-
npm-packages-were-used-to-spread-phishing-links/.

[42] L. Valentić. (2023) Operation brainleeches: Malicious
npm packages fuel supply chain and phishing
attacks. https://www.reversinglabs.com/blog/operation-
brainleeches-malicious-npm-packages-fuel-supply-chain-
and-phishing-attacks.

[43] V. Garousi, M. Felderer, M. V. Mäntylä, and A. Rainer,
Benefitting from the Grey Literature in Software
Engineering Research. Cham: Springer International
Publishing, 2020, pp. 385–413. [Online]. Available:
https://doi.org/10.1007/978-3-030-32489-6 14

[44] N. Leontiadis, T. Moore, and N. Christin, “Measuring
and analyzing Search-Redirection attacks in the illicit
online prescription drug trade,” in 20th USENIX Security
Symposium (USENIX Security 11), San Francisco, CA,
Aug. 2011.

[45] N. Leontiadis, T. Moore, and Christin, “A nearly four-
year longitudinal study of search-engine poisoning,”
in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014, p.
930–941.

[46] P. Wang, X. Mi, X. Liao, X. Wang, K. Yuan, F. Qian,
and R. A. Beyah, “Game of missuggestions: Semantic
analysis of search-autocomplete manipulations,” in 25th
Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, San Diego, California, USA, February
18-21, 2018, 2018.

[47] X. Liao, C. Liu, D. McCoy, E. Shi, S. Hao, and R. Beyah,
“Characterizing long-tail seo spam on cloud web host-
ing services,” in Proceedings of the 25th International
Conference on World Wide Web, Republic and Canton of
Geneva, CHE, 2016, p. 321–332.

[48] T. K. Mackey, J. Kalyanam, T. Katsuki, and G. Lanckriet,
“Twitter-based detection of illegal online sale of prescrip-
tion opioid,” American Journal of Public Health, vol.
107, no. 12, pp. 1910–1915, 2017, pMID: 29048960.

[49] D. Y. Huang, D. Grundman, K. Thomas, A. Kumar,
E. Bursztein, K. Levchenko, and A. C. Snoeren, “Pinning
down abuse on google maps,” in Proceedings of the 26th
International Conference on World Wide Web. Repub-
lic and Canton of Geneva, CHE: International World
Wide Web Conferences Steering Committee, 2017, p.
1471–1479.

[50] Z. Lin, Z. Li, X. Liao, X. Wang, and X. Liu, “Mawseo:
Adversarial wiki search poisoning for illicit online pro-
motion,” in 2024 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2024, pp. 49–49.

[51] H. Yang, K. Du, Y. Zhang, S. Hao, H. Wang, J. Zhang,
and H. Duan, “Mingling of clear and muddy water: Un-
derstanding and detecting semantic confusion in blackhat
seo,” in Computer Security – ESORICS 2021: 26th
European Symposium on Research in Computer Security,
Darmstadt, Germany, October 4–8, 2021, Proceedings,
Part I. Berlin, Heidelberg: Springer-Verlag, 2021, p.
263–284.

[52] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel,
“Small world with high risks: A study of security threats
in the npm ecosystem,” in 28th USENIX Security Sym-
posium (USENIX Security 19), Santa Clara, CA, Aug.
2019, pp. 995–1010.

[53] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,
C. S. Maddila, and L. A. Williams, “What are weak
links in the npm supply chain?” in 44th IEEE/ACM Inter-
national Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2022, Pittsburgh,
PA, USA, May 22-24, 2022. IEEE, 2022, pp. 331–340.

