
Understanding and Detecting Abused Image Hosting Modules as
Malicious Services

Geng Hong
Fudan University

ghong@fudan.edu.cn

Mengying Wu
Fudan University

wumy21@m.fudan.edu.cn

Pei Chen
Fudan University

peichen19@fudan.edu.cn

Xiaojing Liao
Indiana University Bloomington

xliao@indiana.edu

Guoyi Ye
Fudan University

yegy19@fudan.edu.cn

Min Yang
Fudan University

m_yang@fudan.edu.cn

ABSTRACT
As a new type of underground ecosystem, the exploitation of
Abused IHMs as MalIcious sErvices (AIMIEs) is becoming increas-
ingly prevalent among miscreants to host illegal images and prop-
agate harmful content. However, there has been little effort to
understand this new menace, in terms of its magnitude, impact, and
techniques, not to mention any serious effort to detect vulnerable
image hosting modules on a large scale. To fulfill this gap, this pa-
per presents the first measurement study of AIMIEs. By collecting
and analyzing 89 open-sourced AIMIEs, we reveal the landscape
of AIMIEs, report the evolution and evasiveness of abused image
hosting APIs from reputable companies such as Alibaba, Tencent,
and Bytedance, and identify real-world abused images uploaded
through thoseAIMIEs. In addition, we propose a tool, called Viola, to
detect vulnerable image hostingmodules (IHMs) in the wild.We find
477 vulnerable IHM upload APIs associated with 338 web services,
which integrated vulnerable IHMs, and 207 victim FQDNs. The
highest-ranked domain with vulnerable web service is baidu.com,
followed by bilibili.com and 163.com. We have reported abused and
vulnerable IHM upload APIs and received acknowledgments from
69 of them by the time of paper submission.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Web resource abuse, Vulnerability detection, Image hosting module,
Cybercrime

ACM Reference Format:
Geng Hong, Mengying Wu, Pei Chen, Xiaojing Liao, Guoyi Ye, and Min
Yang. 2023. Understanding and Detecting Abused Image Hosting Mod-
ules as Malicious Services . In Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’23), November
26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3576915.3623143

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623143

(a) Service request form (b) Product customization

Figure 1: Examples of web services integrated Image Hosting
Modules (IHMs).

1 INTRODUCTION
In the digital era we live in, images are critical in facilitating com-
munication and information sharing across diverse web services
and platforms. Whether it’s social media networks, e-commerce
websites, or educational platforms, images enhance user engage-
ment and improve the overall user experience. To enable seamless
integration of images, many web services rely on image hosting
modules (IHMs) to manage user image uploading, hosting, and
sharing. For example, a Q&A platform may integrate an IHM to
allow users to include images as supplementary materials for their
questions, while online instant messaging services (e.g.,WhatsApp,
Telegram) allow customized memes to be uploaded with the help
of an IHM . An example of IHM is shown in Figure 1.
Abused IHMs asmalicious services. However, there exist several
reports [36, 49] about abused IHMs as malicious services, or AIMIE,
where the adversary identifies and exploits vulnerable IHM upload
APIs of image hosting modules (IHMs) to create a malicious service.
The implications of such abused IHMs on security are substantial.
First, miscreants can exploit vulnerable IHMs to store a considerable
volume of images, wasting a large amount of storage space in the
victim sites and a subsequent increase in storage expenses. Also, it
introduces the risk of miscreants leveraging abused IHMs to store
and reference illicit content, such as explicit images (as measured
in Section 4.3). The association of such content with the company’s
domain will raise serious concerns regarding reputation and brand
integrity. Despite previous research focusing on the abuse of various
web resources, such as cloud computing services [13, 29, 48, 72],
continuous integration pipelines [42] and DNS [5, 15, 41], IHMs,

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

which are a crucial web service infrastructure, have been largely
neglected. To the best of our knowledge, little effort has been made
to understand the security implications of IHMs.

To fulfill this gap, this paper presents the first measurement
study on real-world AIMIEs. Specifically, we develop a systematic
approach to collect a set of known abusive open-sourced AIMIEs
from GitHub and examine their underlying infrastructure, includ-
ing abused IHM upload APIs and victim image hosting domains.
Armed with this methodology, we discover 89 open-sourced AIMIEs,
along with 109 unique abused IHM upload APIs and 122 victim
image hosting domains. We observed a significant increase in the
number of open-sourced AIMIEs, which has grown from 18 to 89
in the last three years. Moreover, we found that newly emerging
abused IHM upload APIs have increased 494% compared to three
years ago. Further, our study reveals the high severity of AIMIE
abuse: one commercial AIMIE uomg [68] has been requested 407 mil-
lion times in three years based on the passiveDNS database, which
has a similar popularity to www.onenote.com (see Section 4.2.2).
Our study also sheds light on the connection between AIMIEs and
real-world abused image hosting. Specifically, we investigated the
extent to which reputable companies’ servers were being used to
host illicit images via AIMIEs. Particularly, we discover that 1,151
explicit images have been uploaded through 26 IHM upload APIs
we identified in our study. We have reported our findings to the
affected companies including Alibaba, Tencent, and Bytedance.
Detecting vulnerable IHMs in the wild. Apart from reporting
the abuse of IHM upload APIs by AIMIEs, we are also interested in
understanding the prevalence of vulnerable IHM upload APIs in the
wild. To this end, we develop Viola, a tool to assess the security of
IHMs. Viola first recognizes web services that implement IHMs in
a given domain, and then analyzes each stage of the image upload
lifecycle - presubmit, preview, submit, and callback - to determine
if there are any interfaces that can be accessed and exploited by
third parties to upload and host malicious images (see Section 5).
Viola flagged 338 vulnerable IHMs associated with 477 IHM upload
APIs in the wild. The most highly-ranked domain with vulnerable
IHMs is baidu.com (ranked 8 based on Tranco List [39]), followed
by bilibili.com (15) and 163.com (61). We have reported vulnerable
IHM upload APIs found in our study to 311 victim websites, and
received acknowledgments from 69 of them as of paper submission.
During our discussion with the developers about the root cause
of such vulnerability, some of them admitted that they had not
previously considered this new type of abusive service.

To aid website developers in addressing this vulnerability, we
go beyond just outlining the abuse itself. We provide practical mi-
gration recommendations tailored to different web services. These
suggestions encompass a range of strategies, such as opting for
client-side caching as opposed to server-side caching, incorporating
access control measures for uploaded images, ensuring the align-
ment of image hosting content and resources with specific purposes,
and safeguarding uploaded image resource paths (see Section 6.1).
Contributions. This paper makes the following contributions:

• We conduct the first systematic study of AIMIE service, and
uncover the characteristics of this malicious service including their
infrastructure, workflow and abused artifacts (e.g., abused IHM
upload APIs and victim image hosting domains).

Chatbot

Hello, what
can I do for
you?

help.pngFile name

Open Cancel

> This PC > Pictures

Name Type
help.png PNG File

Select Image

Frontend Backend

Server

Chatbot

Hello, what
can I do for
you?

Image Hosting Module
POST https://imio.jd.com/uploadfile/file/post.do

Form data: {appId: im.customer, s: Image Base64}

{“path”: “https://img10.360buyimg.com/mcoss/jfs/UUID.jpg”}

Vulnerable API

Image
Hosting URL

Client Server

Figure 2: The IHM workflow. A user uploads an image via
the IHM, which then communicates with the backend server
to display the processed image in the chatbot interface.

• We model the image upload lifecycle of IHMs and propose
a tool called Viola, which can effectively and accurately discover
vulnerable IHMs and IHM upload APIs in the wild.

•We offer actionable recommendations to help developers mini-
mize the threat of AIMIE and mitigate IHM abuse.

•We report vulnerable IHM upload APIs found in our study to
311 victim websites, including major platforms such as Alibaba,
Baidu, Tencent, and Bytedance.

• We release our code and data at [8].

2 BACKGROUND
2.1 Image Hosting Module
Web image hosting service can be categorized as types of
infrastructure-as-a-service or code module-as-a-service. For
instance, image hosting platforms like Flickr [20], Imgbb [32] fall
under the category of infrastructure-as-a-service, where users can
purchase a public image hosting service to host and share their
images. Meanwhile, image hosting module (IHM) like image upload
function within a chatbot (Figure 1) can be considered examples
of code module-as-a-service. Typically, such services provide an
upload interface – a form in which users specify the location of
an image file on their local computer file systems. Once the image
is uploaded and hosted on the server, it can be accessed or shared.

It’s important to note that, an IHM is not intended to function as
a standalone image hosting platform. Instead, IHM typically serves
as a functionality component/feature within a web service (e.g.,
chatbot, account registration, Q&A platform) that incorporates it.
Additionally, the hosting web service of an IHM sometimes restricts
the type of images that can be uploaded or shared via IHMs in align-
ment with the rules and policies of the hosting web service. For
example, some IHM might display a notification reminding users
to only upload “appropriate” images, such as “upload your medical
records”, “uploaded image should not include personal contact infor-
mation”, or “no pornographic or terrorist images”. Also, some web-
sites outline their term of service [10, 60, 73], that explicitly prohibit
the dissemination of pornography, gambling, intimidatory, racially
discriminatory, or related content while utilizing their services.
Workflow. A typical workflow of an IHM is illustrated in Fig-
ure 2. In this example, we consider an IHM that supports the func-
tionality of a customer service chatbot, allowing users to upload

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

1

2

4

5

7AIMIE
Provider

AIMIE
User

Distribution Vectors

Upload
AIMIEs

Download
AIMIEs

AIMIEs
AIMIEs develop & delivery
Image binary uploading
Image links

8

Vulnerable
Usages

Commercial AIMIE

Open-sourced AIMIE
Build

3

6

Victim
Web Service

Image Hosting
Domains

AIMIE

Figure 3: AIMIE workflow. Vulnerable IHM upload APIs in a
web service’s IHM are wrapped into open-sourced AIMIEs or
commercial AIMIEs byAIMIE providers.AIMIE users discover
AIMIEs in the distribution vectors and utilize them to upload
and host images on victim IHMs servers.

images to supplement the information of their customer service
requests. First, a user clicks the image uploading button to initiate
the IHM and selects an image from their local device. This process is
implemented through the HTML element <input type="file">
on the client side. The IHM then submits a POST request to an
image IHM upload API imio.jd.com/uploadfile/file/post.do with the
payload of the base64 encoding of the selected image and asso-
ciated chat information. Once the image is uploaded, it is hosted
on the image hosting domain img10.360buyimg.com with the URL:
https://img10.360buyimg.com/mcoss/jfs/UUID.jpg. Finally, the IHM
resolves the image hosting URL from the POST response of IHM
upload API and displays the image in the customer service chat-
bot. In this case, the customer service chatbot represents a web
service, which is embedded with an IHM. A FQDN can consist of
multiple web services on the same or different webpages. Note that
we differentiate between the web service and the IHM, aiding in
recognizing the non-image hosting web services and identifying
IHM abuse (Section 5).

In our study, we observe that miscreants offer an abusive service
that allows users to upload, host and access arbitrary images in
vulnerable IHMs (see Section 3). Here we consider this abuse as an
exploitation of IHM functionality, and the IHM upload API is an
abused API that can be exploited by miscreants.

2.2 Threat Model
In our study, we focus on investigating “image hosting modules”
as functional components or features within specific web services
(e.g., chatbot, account registration, Q&A platform). In this context,
we consider an adversary who seeks out vulnerable IHMs that can
be exploited to host and retrieve arbitrary images for malicious
purposes. To achieve this goal, the adversary identifies and exploits
vulnerable IHM upload APIs of IHMs to create a malicious service,
i.e., AIMIEs. We assume that the adversary has the capabilities of an
ordinary user, requiring no special privileges or access to the victim
website. Additionally, the uploaded images do not need to carry
any malicious payload to exploit vulnerabilities in victim servers.

AIMIEs. In our paper, we categorize AIMIEs into two types: com-
mercial AIMIE, where the malicious service is created for profit,
and open-sourced AIMIE, where the malicious service is developed
and distributed as an open-source project. Our preliminary study of
AIMIEs (see Section 3), indicates that the service follows a typical
workflow, as depicted in Figure 3.

An AIMIE provider identified vulnerable IHM upload APIs of
an IHM associated with a web service (➊). After that, the AIMIE
provider wrapped those vulnerable IHM upload APIs to create
an open-sourced AIMIE or a commercial AIMIE (➋), and released
it through multiple distribution vectors, such as third-party
library, docker image, or browser extension (➌). AIMIE users
seeking to host arbitrary images discovered these AIMIEs in
package-management systems (e.g., PyPI [1], Maven [21]) or
extension stores (e.g., Chrome Web Store [26]) (➍). After that,
users will interact with the AIMIEs (➎) via GUI or API to upload
and host arbitrary images on victim IHMs’ servers (➏). The AIMIE
will return the image hosting URLs to users (➐), who might embed
them on their own websites, such as explicit images for adult sites
or advertising for online gambling sites (➑).

2.3 Scope of Problem
Our research focuses on the exploitative misuse of the IHMs, which
are tailored to support specific functionalities of their associated
hosting web services, rather than catering to public image hosting
platforms. It’s worth noting that, in this study, the term “abuse”
refers to any usage of thesemodules that deviate from their intended
purposes, i.e., not for public image hosting, regardless of whether
the hosted images contain explicit content or not, or adhere to
content policies that restrict uploaded materials.

We acknowledge that image hosting platforms (e.g., Flickr),
which are designed for public image hosting, could also poten-
tially be misused for unintended image hosting purposes. However,
our study does not focus on an analysis of user compliance with
the terms of service for these public image hosting platforms. Our
scope remains limited to the abusive exploitation of specialized
IHMs within their hosting web service environments.

3 ABUSED IHM AS MALICIOUS SERVICE
In this section, we present our analysis of a collection of open-
sourced AIMIEs. We first provide an overview of these AIMIEs,
followed by a detailed explanation of ourmethodology for gathering
and profiling these entities.

3.1 Overview of AIMIE
To describe the workflow, we define key artifacts in an AIMIE:
• AIMIE upload API: an AIMIE upload API is an interface offered
by an AIMIE service, facilitating users in uploading images. Typi-
cally, these upload APIs are associated with vulnerable IHMs, image
hosting platforms, or other open-sourced/commercial AIMIEs. An
upload API is usually in the form of domain and path, e.g., vic-
timhost.com/uploadfile/file/post.do, specifying in the HOST and PATH
fields in the POST request, respectively. In our study, we specifically
focus on the abused upload APIs of vulnerable IHMs in AIMIEs. Those
upload APIs are intended for internal use by the IHM and not typically
accessible to the public for image hosting, sharing and storage.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

API Recognition

v

Multiple
Languages

Interpreting

1 2

+
Magnifier

Others

Hosting
Platform

Comparing
IHM Upload

APIs
Domain

Reputation Image Hosting
Domains

AIMIEs

Traffic
Interception

Candidate
Endpoints

AIMIE Discovery1 Abused Upload API Detection2 Hosting Domain Detection3

Figure 4: Methodology overview. We begin by identifying
open-sourced AIMIEs on GitHub, then locate APIs using AST-
based approach. Next we triage abused IHM upload APIs of
vulnerable IHMs, and detect the image hosting domains by
intercepting traffic.

• Image hosting domain: the domain of a victim image hosting
server (e.g., IHM), which hosts and stores uploaded images.

The AIMIE ecosystem is flourishing with various entities, in-
cluding open-sourced AIMIEs, such as auxpi [3], CDNDrive [9] and
commercial AIMIEs, e.g., yum6 [77]. Specifically, commercial AIMIEs
usually offer a variety of hosting plans and flexible service models.
Users can upload an image through the base64 encoding or with
the binary format, even an online image by specifying the resource
URL. However, rare commercial AIMIEs set restrictions for image
content to prohibit child pornography or terrorism content, while
the image size limitation of the uploaded images varies from 5MB
to 10MB. Also, commercial AIMIEs allow users to specify the victim
image hosting domain they want to host images. In terms of pricing,
compared with legal image hosting platforms (e.g., Imgur [43] and
Imgbb [32]), commercial AIMIEs offers affordable hosting plan, e.g.,
ALAPI [6] provides a free plan for uploading 1,000 images per day,
$5 for 100 million images, and $15 for unlimited images. To improve
the usability, some open-sourced AIMIEs allow users to integrate
their codes as third-party libraries, e.g., CDNDrive [9] can be down-
loaded and installed via the official Python Package Manager (PyPI)
while wbp4j [17] via Maven package managers. In our study, we
also observed commercial AIMIEs as Firefox Add-ons, WordPress
Plugins and Docker Images.

3.2 Methodology
Figure 4 illustrates our measurement methodology to collect and
profile open-sourced AIMIE, which consists of three components:
the discovery module for collecting open-sourced AIMIEs in the wild,
the abused API recognition module for identifying abused upload
APIs of vulnerable IHMs (i.e., IHM upload APIs), and the abused
hosting domain identification module for examining abused image
hosting domains of victim IHMs. We elaborate them as follows.

3.2.1 AIMIE discovery. To understand the design and implementa-
tion of the AIMIE, we started with collecting a set of open-sourced
AIMIEs for analysis. Specifically, searching keywords, e.g., “im-
age hosting”, and “picture free upload”, on GitHub, the largest
open-source code-sharing platform [25], we found 508 open-sourced
AIMIE candidates. We scrutinized documentation, git commit logs,
and comments to confirm both the abusive behavior and the services
provided by the AIMIE. For example, auxpi [3] is an open-sourced
AIMIE on GitHub with a code repository and detailed documenta-
tion. Its README file points out that its functionality is to upload

and monitor the lifespan of images, and the repository contains
multiple abused IHM upload APIs from popular reputable compa-
nies (but not image hosting platforms), such as JD [35], Sina [57].
We also find that, in Jan 2019, it committed with the message – “add
many picture upload interfaces”.
Results. To this end, we confirmed 89 open-sourced AIMIEs (see
[8]) by examining 508 candidates. We elaborate on the analysis of
these open-sourced AIMIEs in Section 4.1.

3.2.2 Abused upload API detection. After confirming 89 open-
sourced AIMIEs, we then engaged in the profiling of these AIMIEs
to effectively identify the abused upload APIs of vulnerable IHMs.
Specifically, to extract abused IHM upload APIs from open-sourced
AIMIEs’ code repositories, we develop a language interpreter that
utilizes a set of parsers to extract upload APIs from source codes
written in multiple programming languages, as well as differentiat-
ing abused IHM upload APIs from other AIMIE upload APIs.
Abused API recognition. In this step, we develop a multi-
language interpreter to extract abused APIs scattering over the open-
sourced AIMIE. Specifically, the interpreter will parse the source
code of each open-sourced AIMIE and generate the Abstract Syn-
tax Tree (AST). After that, the interpreter extracts all strings by
interpreting the string-related operations in the ASTs, and vali-
dates whether the strings points to network-related APIs. For these
APIs, the interpreter further examines whether they relate to image
uploading, as elaborate below.

To retrieve all the strings on the ASTs, we build our interpreter on
top of open-source parsers (i.e., py-tree-sitter [67]) to the five most
popular programming languages (JavaScript, PHP, Python, Golang,
and Java) in open-sourced AIMIEs. After that, the interpreter tra-
verses the AST, performing semantic analysis, especially for string
construction and assignment operations. To achieve this, we model
different string operations of multiple programming languages,
such as the plus binary operator (e.g., +) and the format function
(e.g., string.format()). The interpreter then analyzes the sub-
tree rooted at these operations to extract the relevant information.
Additionally, to retrieve variable values during concatenation, we
store the results of all variable assignment operations. To locate the
network-related URLs from the strings, we extract the URLs that
start with http(s). The intuition behind this is that most program-
ming languages (e.g., Python) and popular network libraries (e.g.,
Requests [2]) require the developer to explicitly specify network pro-
tocols, e.g., HTTP, and HTTPS, when initiating network requests.

To determine whether those URLs are candidate APIs that can
be used for uploading, we investigate semantic information (e.g.,
FQDN, path) of each URL. Our approach is based on the insight
that context in static code provides sufficient semantic information.
For example, a string representing the uploading destination is
likely to be assigned to a variable named “uploadAPI”. Thus, we
investigate whether each URL, including its FQDN, path, corre-
sponding variable names, function names and comments, contains
uploading-related keywords (such as “upload” or “image”) to deter-
mine whether it can be used for image uploading.
IHM upload APIs triage. With a set of API candidates output by
the above multi-language interpreter, our approach further triage
abused IHM upload APIs and other AIMIE upload APIs. More specif-
ically, we recognize an API as IHM upload APIs if an API resides on

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

a website that was not designed for image uploading while having
the image-uploading capability. Specifically, we compile a list of
image hosting platforms by utilizing search engines, resulting in a
list of 98 domain names associated with such platforms. The full
list of domains can be found at [8]. Meanwhile, as IHM upload APIs
come from reputable companies, we take abused APIs from the top
500k domains of the Tranco list as IHM upload APIs.
Results. Among 89 open-sourced AIMIEs, we found most of them
implemented in JavaScript (46), followed by PHP (16), Python (7)
and Golang (7), and Java (6). We implemented the interpreters of
the above top-five languages, which cover 92.1% of open-sourced
AIMIEs. To this end, we collect 265 candidate APIs. Further, we
detected 109 unique abused IHM upload APIs (267 in total).
Evaluation. To assess the performance of our approach in
identifying IHM upload APIs, we randomly selected 10 open-sourced
AIMIEs and evaluated the precision and recall of the identified IHM
upload APIs. We manually reviewed the semantics of the source
codes of 10 open-sourced AIMIEs to label all IHM upload APIs,
resulting in 51 IHM upload APIs as the ground truth. After applying
our interpreter, we extracted 56 IHM upload APIs, of which 51
IHM upload APIs were confirmed as true positives, yielding 91.07%
precision/100.00% recall. False positives (FPs) mainly come from
the following two scenarios. Firstly, in certain instances, the IHM
upload APIs necessitate users to invoke an API in order to acquire
an upload token. This has led to three FPs due to the semantic
similarity between this specific API and the IHM upload API itself
(e.g., “https://upload.domain/token.php”). Secondly, within certain
open-sourced AIMIEs, there exist two hard-coded image hosting
URLs (e.g., “https://hosting.domain/”+id). These URLs include
the anticipated keywords; however, they are not upload APIs but
associated with hosting images.

In addition, we compared our AST-based method with a naive
regex-based method. In the regex-based method, we employed regu-
lar expressions to match all URLs present in the source codes. Subse-
quently, we applied the same keyword-based filter and triage strat-
egy as utilized in our proposed method to ascertain whether these
URLs constituted abused IHM upload APIs. In particular, we evaluate
the regex-based method over the same groundtruth dataset we used
above. Running on this set, the regex-basedmethod reported 45 IHM
upload APIs, of which 30 were confirmed as true positives, resulting
in a precision of 66.67% and a recall of 58.82%. This indicates that
our AST-based method outperforms the naive regex-based method.
One key reason is that some IHM upload APIs were implemented as
complex structures that require semantic analysis. For example, the
URL of an IHM upload API is formed by combining a base URL (e.g.,
“http://upload.domain/upload.php”) with additional parameters or
query strings (e.g., “?mime=image¶meters”). Such intricacies
can often escape simple regular expression matching.

3.2.3 Abused hosting domain detection. To detect the abused host
domains, we deploy 14 open-sourced AIMIEs, which covered all
109 IHM upload APIs found in our study, in virtual machines with
Ubuntu 20.04. Here we manually examine configuration files and
documentation to set up all necessary dependencies and compo-
nents, such as Nginx, MySQL, and Redis services. After that, we trig-
ger each IHM upload API in open-sourced AIMIEs and log response
traffic using burpsuite [52] and Proxychains [28]. Here we used

Table 1: Prominent open-sourced AIMIEs with over 100 stars.

open-sourced AIMIE # of Stars # of Forks Language # of Abused
APIs

of Host
Domains

0xDkd/auxpi 2,636 377 Go 12 22
apachecn/CDNDrive 668 90 Python 11 34
Mikubill/transfer 630 91 Go 9 12
ShareX/CustomUploaders 372 228 sxcu 2 0
szvone/imgApi 183 47 PHP 2 13
iAJue/Alibaba_pic 173 88 PHP 1 4
BlueSkyXN/KIENG-FigureBed 119 153 PHP 9 0

Proxychains to instruct the open-sourced AIMIEs to communicate
with its backends through the burpsuite, which is used for logging
the network traffic. To validate the response traffic, we inspect the
traffic payload to ensure it indeed consists of the image we upload.

We further confirm the abused IHM upload APIs we found (see
Section 3.2.2) and build the mapping between abused IHM upload
APIs and the associated image hosting URLs with the purpose of
helping track and analyze more malicious activities. Particularly, we
parse the payload of each abused IHM upload API ’s POST response
to extract the URL within it. This extracted URL is then considered
as the associated image hosting URL for the respective abused IHM
upload API . Subsequently, we manually examined the results to con-
firm that these APIs contain specific semantics, indicating that they
are not employed for storing content originating from other APIs.
Results. We confirm 76 valid abused IHM upload APIs and map
them to 122 image hosting domains. We found that the 33 invalid
IHM upload APIs are expired due to the update from the victim
companies, which will be discussed in Section 4.3.

3.3 Limitations
In our study, we acknowledge that there may be some abused
IHM upload APIs that we have missed. One reason for this is that
the AIMIEs used in our study were collected from open-source
platforms, and it is possible that there are IHM upload APIs that
we have not discovered in the wild. To address this limitation, we
have developed and open-sourced a vulnerable IHM scanner (see
Section 5). Another reason why we may have missed some abused
IHM upload APIs is that our collection process may have overlooked
repositories that do not contain specific keywords that we searched
for. Additionally, some AIMIEs may use countermeasures to bypass
security auditing, such as dynamically loading APIs from the server
side, which may evade our interpreter. Despite these limitations, we
believe that our measurement approach provides valuable insights
into the open-sourced AIMIEs.

4 MEASUREMENT
4.1 Open-sourced AIMIEs
In total, we collect and analyze 89 unique open-sourced AIMIEs,
which exploit 109 IHM upload APIs and abuse 127 image hosting
domains. The open-sourced AIMIEs are built with various languages,
such as JavaScript, PHP, and Golang. Their lines of code (LoC) range
from 717 to 206,891. We observe open-sourced AIMIEs as a thriving
ecosystem: the earliest open-sourced AIMIE found in our study was
in 2017. The number of open-sourced AIMIEs has risen rapidly, about
five times than three years ago (18 in Aug. 2019 vs 89 in Aug.
2022). Throughout the duration of our study, we found that none

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

0 10 20 30 40 50
Commits per Month

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) open-sourced AIMIE Update Frequency

2017 2018 2019 2020 2021 2022
Time

0

20

40

60

80

100

120

of

 U
pl

oa
d

AP
Is

Integrations
Removals

(b) open-sourced AIMIEs API Integration and
Removal

2017 2018 2019 2020 2021 2022
Time

0

20

40

60

80

100

of

 A
IM

IE
s

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f A
IM

IE
s w

ith
 c

om
m

er
cia

l A
PI

Total AIMIEs
AIMIEs with commercial API
% of AIMIEs with commercial API

(c) commercial AIMIE Used in open-sourced
AIMIEs

Figure 5: AIMIE Landscape & Abused IHM upload API Analysis

Table 2: Top 10 IHM upload APIs integrated by open-sourced
AIMIEs.

Domain Path # of
open-sourced AIMIE

% of
open-sourced AIMIE

kfupload.alibaba.com /mupload 23 25.84%
you.163.com /xhr/file/upload.json 13 14.61%
search.jd.com /image 11 12.36%

mp.toutiao.com /upload_photo 11 12.36%
pic.sogou.com /pic/upload_pic.jsp 10 11.24%

cdn-ms.juejin.im /v1/upload 9 10.11%
review.suning.com /imageload/uploadImg.do 9 10.11%

picupload.service.weibo.com /interface/pic_upload.php 8 8.99%
prntscr.com /upload.php 7 7.87%

changyan.sohu.com /api/2/comment/attachment 7 7.87%
shopapi.io.mi.com /homemanage/shop/uploadpic 7 7.87%

of the open-sourced AIMIE were delisted by GitHub. To address this
concern, we have brought this matter to the attention of GitHub’s
security team, who are currently investigating these issues.
Developers of open-sourced AIMIEs. To understand how many
developers contributing to the open-sourced AIMIE, we refer to au-
thors in the commit logs. Particularly, here we use the email address
of the commit author to pinpoint an individual code contributor. In
total, we found 294 developers among the 89 open-sourced AIMIEs.
Interestingly, there are nine code contributors contributing to at
least two open-sourced AIMIEs. Examining their commit logs, we
found these active code contributors add abused IHM upload APIs
into multiple open-sourced AIMIEs.
Evolution. To understand how often they update and for which
reasons they update, we study the commit history of the open-
sourced AIMIEs by inspecting the update frequency and content. As
shown in Figure 5a, we found about 56.2% of open-sourced AIMIEs
were updated more than three times per month, and 13.5% were
updated more than 10 times per month. Among the updates, 4.5%
of them are related to abused IHM upload APIs. The frequent and
long-lasting updates indicate most of open-sourced AIMIEs are care-
fully maintained by its developers. These changes are related to
functionality upgrades, such as bug fixes, and better UI, other than
updating abused APIs. This difference may indicate that the abused
API is relatively stable and victim websites are unaware of this
abuse (see Section 4.2).
Impacts of open-sourced AIMIEs. To evaluate the popularity
of open-sourced AIMIEs, we study the number of stars and forks
of open-sourced AIMIEs’ GitHub repositories. Among the 89 open-
sourced AIMIEs, seven have a minimum of 100 stars on GitHub,

15 have received between 10 and 100 stars, and the remaining 67
have less than 10 stars. Table 1 lists the seven open-sourced AIMIEs
with more than 100 stars. The most popular open-sourced AIMIE is
auxpi [3], which provides the image hosting service with both API
and the easy-to-use web GUI (graphical user interface). It received
over 2.7k stars. auxpi integrated 12 abused IHM upload APIs of IHMs
from big tech companies, including Alibaba, Bytedance, Xiaomi, etc.
Even worse, the auxpi library has been forked over 380 times. Piles
of abusive repositories are created based on it for various purposes,
such as online shopping or content management system (CMS).

4.2 Abused IHM Upload API Analysis
In this subsection, we profile the abuse situation of abused IHM
upload APIs’ installation, spread, and deletion to understand the
evolution of open-sourced AIMIEs.

4.2.1 Abused IHM upload APIs. In total, 89 open-sourced AIMIEs
recruit 109 IHM upload APIs, belonging to 65 popular companies.
Table 2 list the top-10 IHM upload APIs integrated by the 89 open-
sourced AIMIEs. The kfupload.alibaba.com/mupload is the most pop-
ular IHM upload API , which is integrated by 25.84% open-sourced
AIMIEs, followed by you.163.com/xhr/file/upload.json (14.61%) and
search.jd.com/image (12.36%). Also, we found that none of the
abused IHM upload APIs were on a blocklist of Google Safe Brows-
ing [33] and VirusTotal [70], implying that the IHM upload APIs
can avoid detection while hosting inappropriate content.
Abused IHM upload API integration and removal. To investi-
gate the evolution trend of abused IHM upload APIs in open-sourced
AIMIEs, we study when the abused IHM upload API was integrated
and removed. Specifically, we parse the git commit logs associated
with IHM upload APIs in open-sourced AIMIE code repositories by
inspecting the collected abused IHM upload APIs that appeared
in the git changes between adjacent versions. To this end, among
2,682 git logs from 89 open-sourced AIMIEs, we identify 121 git
logs (109 integrations and 21 removals) associated with 109 IHM
upload APIs. As shown in Figure 5b, during open-sourced AIMIE
integrates newly discovered vulnerable IHM upload APIs frequently,
but only a few repositories remove them. The majority of removals
are to remove the out-of-service APIs. The significant disparity
between API integrations and removals suggests that this threat
has become widespread over time. The average integrated rate of
newly-found IHM upload APIs is experiencing phases of fast rise

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

from December 2018 to January 2019. The open-sourced AIMIEs,
Figure-bed [64] and upimg-mirror [69], integrated three and six
newly-found IHM upload APIs, respectively, in the two months.
Furthermore, an extremely rapid growth of newly-found IHM up-
load APIs was seen around July 2020. The reason for such growth
is the TransparentLC/free-img, likeyun/likeyun-imgupload
and chwl66/image, added/updated a total of 22 IHM upload APIs in
the same month. Besides that, they actively mined 39 newly-found
APIs during their lifespan, efficiently facilitating others to abuse
such vulnerabilities.
Other repositories with abused IHM upload APIs. As
mentioned earlier, we discovered 109 IHM upload APIs from the
open-sourced AIMIEs. To understand how such APIs are being
used in other code repositories, we search the 109 abused IHM
upload APIs through the GitHub searching API [25]. Particularly,
we search the FQDN of the APIs, and leverage multiple language
interpreter (see Section 3.2) to reconstruct the incomplete URL, and
subsequently verified if the URL corresponded to any IHM upload
APIs. We exclude open-sourced AIMIEs and non-code repositories
(e.g., personal blogs). This process revealed 193 repositories with
abused IHM upload APIs. We classified these repositories into three
categories based on GitHub topic tags: toolbox, website (CMS), and
mini-program.
• Toolbox repositories provide various functionality to users,
e.g., video slicing, image compression. The abused IHM upload
APIs served the image hosting functionality of these repositories.
For example, the WechatMomentScreenshot [66], a widely-used
counterfeit screenshot generation tool with 400 forks and 2.6k
stars, stores generated screenshots Alibaba’s servers via abused
IHM upload APIs.
•Website repositories are those for content management systems
(CMS), personal blogs or web platforms (e.g., online malls). Those
repositories customize Mac-CMS templates [45] by implementing
their image hosting functions using abused IHM upload APIs.
• Mini-program are mini-applications [44] that run within mobile
host apps. Most of the mini-programs with abused IHM upload API
are online shopping malls, implementing their image hosting for
displaying merchandise using abused IHM upload APIs.

4.2.2 Commercial AIMIE services. Apart from the abused upload
APIs of vulnerable IHMs, looking into the other image uploading
APIs, interestingly, we observed that open-sourced AIMIEs inte-
grated image upload APIs provided by commercial AIMIEs as their
own upload APIs (see Section 3.1). Specifically, we looked into the
remaining APIs from our triage tool (see Section 3.2.2), which did
not design for image uploading but not from top 500K Tranco do-
mains. Particularly, we visited those FQDNs and checked whether
they offered AIMIE services. The outcome was the confirmation of
89 upload APIs provided by 13 commercial AIMIEs and integrated
by 51 open-sourced AIMIEs. As shown in Table 3, the upload APIs of
several prominent commercial AIMIEs (such as yum6, kieng, and
hualigs) have been incorporated into multiple distinct open-sourced
AIMIEs. Also, these commercial AIMIEs often offer either free or
partially free services, which facilitates their adoption by various
open-source AIMIE projects and enables a more extensive reach of
the abusive behavior. Additionally, we observe the trend of incorpo-
rating upload APIs of commercial AIMIEs into open-sourced AIMIEs.

As shown in Figure 5c, following the initial observation of a com-
mercial AIMIE, it has subsequently been embraced by over 15.7%
(14 out of 89) of the open-sourced AIMIEs over a span of four years.
Query volume of commercial AIMIE. The query volume of
IHM upload APIs is an important metric that indicates the abuse
severity of AIMIE, however, we can hardly tell the query volume
from abusers since they are hiding in a large number of normal
query requests. Luckily, as the commercial AIMIE have their own
domains to forward the abused IHM upload API query traffic, we can
estimate the query volume those APIs using passiveDNS databases.

We use a commercial passiveDNS database [34] to gauge DNS
activity for a given commercial AIMIE. This database contains the
DNS resource records from all successful DNS resolutions observed
at amain ISP, from July 1st, 2019 to the present.We sumup the query
volume of each commercial AIMIE from the first time it was observed
in the passiveDNS database to December 2nd, 2022, as shown in
Table 3. The total query volume ranges from 827 to 407,785,813, with
daily average ranges from 5.82 to 326,228.65. For instance, uomg,
one of commercial AIMIEs, has been queried up to 407M times in
three years, has a similar popularity to www.onenote.com, which
accepts 388M queries within the same time frame.

4.3 Images hosted via AIMIEs
In our study, we estimate the number of abused images hosted via
AIMIEs by looking into explicit images which are hosted on the
image hosting domains of the AIMIEs, which are reputable domains
that prohibit explicit images. To accomplish this, we relied on the
fact that images uploaded through specific IHM upload APIs are typ-
ically stored in the same resource directory path, which helps devel-
opers maintain an organized file structure. Using this observation,
we checked whether URLs of explicit images matched the patterns
of URLs of uploaded images that we detected in Section 3.2.3. If so,
we inferred that the explicit image was uploaded through an AIMIE.

Specifically, we collected 813,577 webpages from the three
sources (PhishTank [27], ultimate-blocklist [11], and a commercial
list from an anonymous company). Utilizing an explicit content
classifier ([76]), which utilizes a convolutional neural network
(CNN) trained on a large-scale dataset of labeled images to analyze
the visual features, we find 243,447 explicit images. We then gener-
ate the patterns from the URLs of uploaded images. Specifically, we
first cluster the URLs through the Levenshtein distance into groups.
For URLs within a group, we mask out the differences between
them and treat the rest as abused image hosting patterns. For
example, on Tencent clouds customer service [61], images uploaded
through the abused API yzf.qq.com/fsnb/kf-file/upload_wx_media
will be hosted on the victim server with the following pattern:
yzf.qq.com/fsnb/kf-file/kf_pic/UUID.jpg. If the hosting URL of the
explicit image matches the pattern, we report it as an abused image
through AIMIEs.
Results. We developed 83 patterns to identify abused images. By
examining 243,447 unique explicit images collected from 813,577
webpages of the three blocklists, we discovered that 1,151 explicit
images were uploaded through 26 IHM upload APIs and hosted on
50 vulnerable image hosting domains. These abused images were
distributed across 39,414 blocklist websites, with each image dis-
played on an average of 129.37 websites. For example, Tencent is a

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

Table 3: All 13 commercial AIMIEs identified in this study.

commercial AIMIE # of APIs
used

of APIs
alive

of image
hosting domains Charges # of open-sourced

AIMIE Integration
Integration Time

of open-sourced AIMIE
Start Time
of PDNS

Daily Avg.
Query Volume

Total
Query Volume

apis.yum6.cn 4 0 N/A free 14 2018/10/29 2019/07/01* 36.18 45,225
www.yanwz.cn 1 0 N/A unknown 2 2019/01/19 2019/07/01* 648.70 810,870
api.uomg.com 7 0 N/A free 12 2019/04/09 2019/07/01* 326,228.65 407,785,813
api.169740.com 1 0 N/A unknown 1 2019/10/19 2019/07/01* 5,048.80 6,310,998
v1.alapi.cn 9 0 N/A partial (free within 1,000 images) 2 2020/04/11 2019/07/08 11,859.13 14,740,894
api.nikolatesla.top 2 0 N/A unknown 2 2020/07/09 2020/05/14 35.07 32,685
image.kieng.cn 11 0 N/A free 22 2020/12/18 2019/07/23 1,037.63 1,274,207
www.hualigs.cn 23 2 3 free 20 2021/01/14 2019/07/01* 58,834.14 73,542,676
pic.onji.cn 9 2 3 free 3 2021/05/10 2019/07/01* 46.32 57,898
tool.lq520.club 10 0 N/A unknown 2 2021/11/12 2019/07/20 100.11 123,239
pic.ihcloud.net 15 0 N/A free 3 2021/12/26 2021/11/20 309.24 116,584
api.kinh.cc 14 9 21 free 1 2022/04/19 2020/08/05 49,426.93 41,963,467
xkx1.herokuapp.com 4 0 N/A unknown 1 2022/07/24 2022/07/13 5.82 827
* The passive DNS database supplies data post-2019/07/01; consequently, we compute the data from this date onward.

Table 4: Top 10 abused companies.

Company Sample FQDN # Related
FQDNs

Image
Links

Blocklist
Domains

Tencent p.qlogo.cn 7 428 56,421
Alibaba ae05.alicdn.com 16 443 51,201
Ctrip dimg04.c-ctrip.com 1 314 29,502
Toutiao p1.toutiaoimg.com 7 35 13,340
Baidu wkphoto.cdn.bcebos.com 34 352 11,834
JD dd-static.jd.com 13 399 3,170
Sina tvax1.sinaimg.cn 19 297 2,034
Sohu i2.itc.cn 19 130 687
Meituan p0.meituan.net 2 51 519
360 p1.qhimg.com 17 65 34

leading IT company in China, that owns domains including qq.com,
qlogo.com, etc. Tencent’s term of service [60] prohibits users to up-
load explicit content under any conditions. However, in our study,
we observed around 56k blocklisted domains (e.g., illegal gambling,
pornographic websites) abuse Tencent’s private IHM upload APIs.
Note that this approach is a conservative estimation since we only
consider explicit images on blocklisted webpages. It’s possible that
AIMIE users upload non-explicit images, which are not included in
our lower-bound estimation.
Discussion. The above conservative result is based on the AIMIEs,
which only reveal the tip of the iceberg of the real-world abuse land-
scape. To conduct a more general estimation, we study how many
explicit image links are hosted on Tranco top 1M non-pornographic
domains. Here we determine the non-pornographic domains based
on the tags provided by Similarweb [56]. In our study, we observed
30,416 unique explicit images from 87,195 blocklist domains. The de-
tails are listed in Table 4. Note that the number of associated FQDNs
differs for each company, as a single company might have multiple
vulnerable APIs that store abusive images on distinct FQDNs.

5 VULNERABLE IHMS IN THEWILD
Apart from reporting IHM upload APIs have been abused by open-
sourced AIMIEs, we also wonder about the prevalence of vulnerable
IHM upload APIs in the wild. In this section, we elaborate on the
design and implementation of our approach for vulnerable IHM as-
sessment, Viola. Figure 6 shows the architecture of Viola, consisting
of a semantic analyzer, an upload lifecycle assessor, and a longitudi-
nal analyzer. Viola first recognizes all IHM-enabled web services

within the domain using semantic analyzer. Next, through upload
lifecycle assessor, it assesses each stage of the image upload lifecycle
(presubmit, preview, submit, and callback) to identify vulnerable
IHM upload APIs, while using the upload lifecycle assessor to track
the lifecycle of the uploaded images.

5.1 Semantic Analyzer
We bootstrapped our study by recognizing web services with IHMs
on a large scale. Identifying web services with IHMs on a website is
nontrivial, IHMs are widely used in modern web services, and their
design and implementation vary significantly. Our methodology
for detecting such web services is based on the observation that
IHM always incurs a semantic gap between the module itself (e.g.,
image upload) and its host web service (e.g., chatbot).
Locating host web services. Our approach for identifying a host
web service of an IHM starts with locating the client-side user
interface of the IHM . Using this interface as an anchor, we traverse
the DOM tree to determine the associated host web service. We
use the signature of <input type=“file”> to locate a client-side
user interface. Specifically, we use document.querySelectorAll
to query all the input tags with the field type equals to file.

To establish a clear boundary for a web service with an IHM
and facilitate subsequent processing (e.g., pre-filling fields in the
table prior to triggering submit and callback stages), we adopted
a methodology proposed by previous work [38] for web service
localization. In particular, we leveraged low-level text properties
instead of DOM structure to construct the segmentation model. The
central idea lies in the fact that text density variance within the
same web service is considerably lower than the variance observed
between different web services. Based on this insight, we applied
the concept to our web service localization task. The specifics of
threshold selection for segmentation can be found in Section 5.4.
Checking semantic inconsistency. After retrieving the web
service with IHMs, we build the semantic profile for each web ser-
vice by constructing the semantic vector with the state-of-the-art
embedding technique. Specifically, we extract the context of the
IHM . Here for each element, we extract its text and its attribute as
our context. After concatenating these text contexts, we remove all
the punctuation and stop-words and translate them into English.
We use the Google pre-training BERT model [16] and generate fea-
ture vectors. To check whether the semantics of the web service is

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Image Upload Lifecycle Assessor2

URLs

https://victim.com/a.png
https://victim.com/b.png
https://victim.com/c.png

HASH
Similarity

Compare with origin image

Image Validator

Preview

Add images

Thank you for your submission.

Presubmit

Choose Image ChangePOC.png

Submit

Submit
EmailName

Alice Alice@bob.com

Callback

Add images

Causal AnalysisLifecycle Trigger

c

Semantic Analyzer 1

c

Purpose Analyzer

c

Longitudinal
Analyzer

c

Website
Start

Image
Select

Render
Preview

Image
Presubmit POST/PUT

presubmit.jpg

Submit

Render
Callback

Website
Close

GET
preview.jpg

GET
callback.jpg

POST/PUT
submit.jpg

Webpages

Web Service Locater

Semantic Extractor

Non image
hosting

web service

Name

Email

Drop images here

3 Longitudinal Analyzer

Figure 6: Viola overview. Viola first recognizes all IHM-enabled web services within the domain (➊). Next, it then evaluates
vulnerability across each image upload stages - presubmit, preview, submit, and callback - by uploading and hosting an image
within IHMs (➋), while tracking the lifecycle of the uploaded images (➌).

aligned with the image hosting, we compare the semantic distance
between them. Specifically, we manually collect the image hosting
service on reputable image hosting platforms and generate their
semantics (IHMs semantics for short). Then, we compare the Eu-
clidean distance between the candidate web service and the IHMs
semantics, if the minimum distance is larger than a threshold, we
take it semantics of such web service is inconsistent with IHMs.
The evaluation of threshold selection can be found in Section 5.4.

5.2 Upload Lifecycle Assessor
Targeting web services that are not intended to share or store im-
ages while having image upload capability, Image Upload Lifecycle
Assessor dynamically interacts with image hosting modules in web
service and identifies the image upload vulnerabilities.
Modeling image upload lifecycle. We take the qualitative open-
coding technique [58] on 50 web services with IHMs to model the
workflow of the IHM . Specifically, we focus on monitoring how
users interact with the IHM and the corresponding network traffics.

For a random subset comprising 10 web services (about 20% of
the total), two cybersecurity professionals independently trigger
and label the stage of IHMs. Then they discussed with each other
to resolve inconsistencies while generating initial codebooks. After
that, they independently coded the remaining 40 web services and
compared their coded results by Krippendorff’s alpha coefficient, a
widely used statistical measure of the agreement achieved when
coding a set of units of analysis. Krippendorff’s alpha of this study
is 0.87, which is higher than the threshold of reliability in previous
work [30]. After that, they resolved all disagreements in coding
phrases for each case to generate the final codes, as shown in
Table 5. The ultimate codebook developed provides labels for how
people interact with modern IHMs and which procedure of the
IHMs process with the uploaded images. In total, it took two human
laborers around three days to complete the procedure.

As shown in Table 5, in general, there are two phases during the
interaction with web services with an IHM . 1) Image Selection: a
user triggers the IHMs and selects the image from the local device.
2) Image Submission: a user fills in the required fields and submits

the forms. During the interactions, they also monitor the network
traffic, especially paying attention to the request method, payload,
and event timestamp. Based on the traffic analysis, four stages
related to different IHM functionality are summarized as follows:
• Before submission – Presubmit Stage. To speed up the form sub-
mission process, websites typically upload images as soon as they
are selected, rather than waiting until the submit button is pressed.
Since this early submission is before the user-triggered submission,
thus we named it Presubmit.

A key step of Presubmit is uploading the image to the server. Ac-
cording to RFC 2616 [19], clients should use the HTTP POST/PUT
method to create a resource (i.e., image) on the server. Consequently,
uploading the image binary to a remote server via the POST/PUT
method prior to image submission is regarded as Presubmit.
• Before submission – Preview Stage. To provide users with “What
You See Is What You Get” [74] experience, web services render the
user-chosen image on the screen after selecting. Since the HTML
 element [47] is compatible with all modern web browsers,
regardless of desktop or mobile, it’s intrinsic for developers to
render the image with element. There are two common
approaches to host the preview images: the server-side cache and
client-side cache. The server-side cache directly uploads the user-
selected image to the remote server, then get the remote image links;
the client-side cache, which transforms the user-selected image to
client-side cache objects, such as a blob object or data URL, then
render this local object with . Thus browsers initiate the GET
requests before submission be considered as Preview.
• After submission – Submit Stage.After the preview and presubmit,
users submit content, including the chosen images and the texts
from blogs, posts, or reviews, to the remote server.

Image-related submission implementations can be divided into
two categories: the merged approach and the sequential approach.
In the merged approach, the client side only sends a single request
to the server, containing both the upload images binary and
corresponding text. However, some web applications utilize a
separate image hosting API (e.g., third-party image CDN). As a
result, developers adopt the sequential approach, where the client

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

first uploads images to the image hosting servers. Upon receiving
the image links, the client fires a second request containing the
links along with the text.
• After submission – Callback Stage. Websites demonstrate the
submission result to confirm the status and check the information.
We name this information display behavior as Callback. Developers
return the link to the user-submitted image and render it through
the src attribute, while others leverage the blob object or data URL
(mentioned in the Preview stage) instead. Thus browsers initiating
GET requests after submission are considered as Callback.
Dynamic analysis. To automatically trigger the potential pitfalls
in different stages, here we instruct the IHM to perform full-cycle
actions. The actions can be categorized into the following two steps:

1) Image Selection: the lifecycle trigger initiates the process
by clicking the upload element within the image hosting module,
which is located in the Semantic Analyzer (Section 5.1). Next, it
selects and uploads the beacon image. It is important to note that
the beacon images used in our tests are explicitly labeled with the
experiment’s purpose and contact information, both in the file name
and embedded within the file content (see Section 6.2 for further
ethical considerations).

2) Image Submission: dynamic triggering of the submission stage
is much more challenging than it seems to be. In real-world web
development, the image components are usually built within the
<form> elements. In most cases, to trigger the following interac-
tion, websites require that multiple fields in the form be filled in
before submitting (e.g., email address for user feedback services).
To deal with this challenge, for web elements requiring inputting
text content, we pre-define well-equipped user information based
on previous work, such as the users’ names, email, addresses, com-
ments, etc. As for web elements that require user selection, e.g.,
radio box and check box, the dynamic trigger selects one or more
of them according to the element type and prompts information
around the forms. After filling in the fields, we then locate and trig-
ger the submission process by inspecting the elements’ semantic
information. Specifically, we examine the id and class attributes
and text of the button element, and trigger them if contain specific
keywords, such as “upload, confirm, and submit”.

In our study, we implement the dynamic analysis based on Pup-
peteer [53], which automatically triggers the IHMs related interac-
tions andmonitorsweb trafficwith ChromeDeveloper Protocol [14].
Additionally, we open source the tool in [8].
Vulnerable IHM detection. In our study, we recognize vulnerable
IHM upload APIs if the implementation and design of IHM have the
following pitfalls.
• Presumbit Stage. If the server side returns the URL of presubmit
image to the client and did not set proper access control for the
presubmit image, which leads to the attacker may access the image
longer than it should be. Thus, attacks can massively initiate pre-
submit requests to upload and host the long-lived abusive content.

To detect this pitfall, we consider image URLs in requests or
responses via HTTP POST/PUT method after beacon image selec-
tion and before submission as potential vulnerabilities in Presubmit
stage. Since the returned image URLs may contain noise other than
the beacon image, we locate the abused image URL using the Im-
age Validator to exclude the noise by assessing image similarity.
Specifically, in the Image Validator, we first compare the image

Client Server

Stage 2: Preview

Upload image.jpg

Resp. for next GET

{url: http://domain.com/abcdef.jpg}

GET http://domain.com/abcdef.jpg

binary: abcdef.jpg

Client Server

Stage 1: Presubmit

POST Req.

binary: image.jpg

Resp. hosting address for further submit

{url: http://domain.com/abcdef.jpg}

①

②
POST/PUT directly to target address

http//domain.com/abcd/abcdef.jpg

Client Server

Client Server

Stage 3: Submit

POST Req. with all information

{img:image.jpg, text:aaaa}

Redundant Resp.

{url: http://domain.com/abcdef.jpg}

POST Req. with only image

binary: image.jpg

Resp.

{url: http://domain.com/abcdef.jpg}

①Merged

② Sequential

POST text with image url

{text:aaaa, img: http://domain.com/abcdef.jpg}

Client Server

Client Server

Stage 4: Callback

binary: abcdef.jpg

GET http://domain.com/abcdef.jpg

Figure 7: Image upload lifecycle. An IHM may have a full
four-stage process or omit certain stages.

hash consistency, if failed, we then compare the visual similarity of
returned images with beacon image. In particular, we leverage ham-
ming distance between the perceptual hashes of the downloaded
image and the beacon. If the difference is below the threshold, we
consider the returned image to be identical to the beacon image. The
evaluation of the similarity algorithm can be found in Section B.2.
• Preview Stage. For the developers who utilize server-side cache
to host preview images, they should set a proper expired time
for cached files. Otherwise, attackers may initiate massive image
preview requests, which upload images to the server-side cache. If
the “preview” image is without a proper lifespan limitation, which
can be abused by the attacker as an image hosting service.

To detect this pitfall, we take the image URLs in HTTP GET
requests after the beacon image selection and before submission
as the potential vulnerability in the Preview stage, then apply the
Image Validator as in Presubmit Stage, to collect abused URLs.
• Submit Stage. The root cause of flaws in submission is that the
server side should not expose resource addresses to the client.
Specifically, there exist two flaws in the implementations. First,
in the merged approach, if the server-side returns redundant re-
sponses containing the uploaded images links to the client side,
which leads to the vulnerability. Second, in the sequential approach,
if the server does not encrypt or encode the remote address of the
returned image URLs, the attacker can capture and abuse the links
of the uploaded images. We take the image URLs in requests or
responses via HTTP POST/PUT method after forms filling, and sub-
mission as the potential vulnerability in Submit stage, then apply
the Image Validator as in Presubmit Stage, to collect the abused URL.
• Callback Stage. Similar to the flaws in Preview Stage, developers
who utilize server-side cache to host callback images should set a
proper expired time for cached files. Otherwise, such IHMs can be
abused by the attacker as an image hosting service.

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 5: Number of web services for each lifecycle stage

UI Interaction Stage Definition #(%)
Image Selection Presubmit Submit the image to remote server after selecting but before user submitting 27(54%)

Preview Render the user-chosen image on the screen after selecting 31(62%)
Image Submission Submit Submit the image and text to the remote server after user submitting 50(100%)

Callback Render the user-chosen image on the screen after user submitting 25(50%)

We take the image links in HTTP GET requests after beacon
image selection, form filling, and submission as the potential vul-
nerability in the Callback stage, then apply the Image Validator as
in Presubmit Stage, to collect the abused URL.

5.3 Longitudinal Analyzer
The AIMIE users abuse the IHM upload APIs to host their images for
free and/or illegal purposes. Thus, the stability and robustness of
uploaded images are critical to them. However, we notice that a few
images will be inaccessible after a fixed period due to the mitigating
of websites (discuss in Section 6.1). We apply the longitudinal mon-
itor to examine the lifespan of uploaded images. In our approach,
for each image URL confirmed by Image Validator, we continuously
monitor the image URL at regular intervals within a period under
a trade-off between precision and ethical concerns (e.g., server re-
source consumption). We set the maximum period to seven days
and use the following intervals: one hour in the first three days,
and 24 hours for the next four days.

The time the image lives determines whether it can be abused in
the wild, e.g., the corresponding image hosting module is vulnerable.
A short lifespan may be a design feature while an unexpectedly
long lifespan may be a vulnerability. To gain an inside view of
the lifespan threshold for AIMIE users, we refer to the minimum
lifespan of image hosting domains during our dynamic profiling.
Specifically, if an uploaded image through the IHMs exists for more
than 3 days, we consider it a vulnerability. The detail of the ethical
discussion can be found in Section 6.2.

5.4 Evaluation
We run all the experiments on a Ubuntu 18.04 server with Intel Xeon
2.8G, 32 cores CPU and 192 GB memory. The Semantic Analyzer
and Image Upload Lifecycle Assessor cost 17 hours and 25 hours,
respectively. Generally, utilizing the Tranco [39] top 10k domains
as seed input, we adopt the Depth-First Search (DFS) methodology
as the navigation technique, limiting the maximum traversal depth
to four layers. To minimize redundancy and cover more domains,
we stop crawling a webpage when encountering its fully qualified
domain name (FQDN) more than five times. Finally, we successfully
crawled 426,702 webpages in Tranco top 1M, found 5,668 image
hosting modules by Semantic Analyzer and discover 397 vulnera-
ble IHMs in Upload Lifecycle Assessor and found images uploaded
through 338 vulnerable IHMs exist for more than three days. Only
5% vulnerable IHMs found by Viola exhibit overlap with those found
by open-sourced AIMIE, suggesting that there are more potentially
vulnerable IHMs in the wild that could be exploited by miscreants.

Table 6: Classifier F1-score for Semantic Analyzer

Semantic Distance Threshold
4.5 5.0 5.5 6.0 6.5

Se
gm

en
ta
ti
on

T
hr

es
ho

ld

0.30 48.48% 67.53% 71.43% 77.55% 79.25%
0.34 48.48% 70.00% 74.42% 80.00% 83.63%
0.38 52.17% 72.29% 74.73% 84.40% 80.00%
0.42 51.43% 71.43% 73.91% 83.63% 78.63%
0.46 51.43% 71.43% 73.92% 83.63% 78.63%

Effectiveness of Viola. We measure the performance of Viola
based on its precision and recall. Due to the absence of the off-
the-shelf ground truth dataset, we assess precision by manually
inspecting 100 randomly selected cases from the Viola results. We
find that 97 cases are true positive, and three are false positive. More
specifically, in the three false positives, one of them is introduced by
the Semantic Analyzer, which fails to exclude the image uploading
components; while the other two of them are raised by the Lifecycle
Assessor, which attributes the vulnerable stage from presubmit to
submit due to the accidental network latency. To evaluate the cov-
erage of Viola, we manually identified image upload vulnerability
on 20 popular websites (randomly selected from Tranco [39] Top
10k websites) with our best efforts. In this process, we found seven
vulnerabilities on these websites, while Viola reported four of them.
Upon reviewing false negatives, we found one instance where the
failure occurred due to IHM interaction requiring account login,
while the other two cases demanded CAPTCHA-solving. Given the
known complexities of automating login and CAPTCHA processes
in web testing, we propose that integrating Viola with a more robust
dynamic triggering module could enhance coverage.
Effectiveness of Semantic Analyzer. To comprehensively
assess the performance of the semantic analyzer, we performed an
evaluation of the threshold selection for both the web segmentation
module and the semantic checking module. To achieve this, we
manually labeled 50 web services with IHMs and 50 image hosting
modules from reputable image hosting platforms, which served as
our ground truth. The outcomes of this evaluation are presented in
Table 6. With a threshold of 0.38 in the web segmentation module
and 6.0 in the semantic checking module, our Semantic Analyzer
exhibited a precision of 77.97%, recall of 92.00%, and an F1-score of
84.40%. By manually inspecting the result, we conclude that false
positives occur as web services are developed using widely-adopted
templates, which are also utilized by IHM web services. False nega-
tives are mainly because of the lack of semantic information about
the specific purpose (e.g., chatbot, feedback) in web segmentation.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

Limitations. We acknowledge that there are still some limitations
worth noting, despite our best efforts to develop the methodology of
Viola. As previously mentioned, triggering the full lifecycle of image
uploads is not a trivial task. Websites may implement CAPTCHA
checks before submission. Although Viola has been designed to
handle various form-filling tasks and button-clicking strategies,
we admit that there may be cases that it does not cover. Besides,
due to the computing resource limitation, we only crawl webpages
of an FQDN no more than five times, which may result in Viola
miss some vulnerable APIs. We believe that future research could
achieve higher coverage by improving the triggering module or
providing additional computing resources.

5.5 Findings
In this subsection, we perform a measurement study to understand
the 477 vulnerable stages and their associated 338 web services and
207 FQDNs in the wild. Due to the large number of vulnerabilities
found, we are communicating with the developers on a case-by-case
basis (see detail in Section 6.2).
Scope and magnitude. Our study reveals the prevalence of
vulnerable IHM upload APIs in reputable websites. Specifically,
websites with vulnerable web services have a median ranking
of 20,520. The most highly-ranked domain with vulnerable IHM
upload APIs is baidu.com, followed by bilibili.com and 163.com .
Notably, Baidu Mobile Statics (mtj.baidu.com) stood out as the
domain with the highest number of vulnerable stages in our
study. Particularly, it has two vulnerable web services: online chat-
bot and customer satisfaction survey, resulting in a total of six
vulnerable stages. The vulnerable upload APIs associated with
this domain include https://mtj.baidu.com/web/demo/ajax/post and
https://mtj.baidu.com/web/ajax/post.
Image lifespan. Figure 9 illustrates the lifespan of images uploaded
through these 397 vulnerable IHMs with 550 vulnerable stages, as
monitored by the Longitudinal Analyzer. Our analysis indicates
that over a three-day span, around 13.27% (73/550) of the images be-
come inaccessible. However, the larger portion, constituting 79.63%
(438/550) of the images, remains accessible even after seven days.
Notably, only 20.56% of the vulnerable IHMs that exposed image
URLs during the Presubmit stage had become inaccessible within
the same week.
Vulnerable web services and case studies. Regarding vulnerable
web service categories, Figure 8 shows that product review services
exhibit the most vulnerable IHM upload APIs. We observe 106
product review services contain 127 vulnerable stages; also 69
online chatting services expose 81 stages to abuse. Looking into
those vulnerable web services, our study further revealed a set of
widely-used web service plugins or templates with vulnerable IHMs.
For example, we find that 21 vulnerable product review services
are built with Judge.me plugin [37], which ranked 20 in Shopify
app store [55], and received a rating of 5.0 under more than 12k
comments. The workflow is as follows: when users intend to write a
review, they initially select the relevant image of their goods within
the Judge.me web service. Subsequently, to expedite the submission
of complete review forms and enhance the user experience, the
IHM utilizes the vulnerable IHM upload API to send the chosen
image to a remote storage space that they’ve acquired. Moreover,

Review Chat Form Feedback Edit Search
Component Purpose

0

20

40

60

80

100

120

of

 W
eb

 S
er

vi
ce

s

106

69
54

42 40
29

Figure 8: # of vulnerable web services per purpose. The web
services of product review showcase themost vulnerable IHM
upload APIs.

0 1 2 3 4 5 6 7
Lifespan Days

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y Presubmit
Preview
Submit
Callback

Figure 9: CDFs of image lifespan in each vulnerable stage.
79.63% images have a lifespan longer than seven days. Images
uploaded via the Presubmit stage display the highest survival
rate, with only 20.56% expired within seven days.

in order to display the selected images to users, the IHM retrieves
these images from the remote server and then presents them within
the web service interface. Throughout this process, users can
extract the image link either from the response of the presubmit
stage or from the request of the preview stage. These APIs provide
the image link in plain text format, and the link remains active
even if the user opts not to finalize the review submission.

Besides, information collection services display numerous
vulnerable IHMs. For example, the account registration of
baishiyunda.cn requires users to submit ID card, real name, and ad-
dress. Once users select the photo of ID card from local storage, the
website will immediately post the image to the remote server and
return the link of images in the response package. This upload ac-
tion is done without user notification or confirmation. Additionally,
the IHM not only can be abused to massively as AIMIE. Moreover,
users have no means of deleting the uploaded images, which vio-
lates “right to be forgotten” in privacy laws and regulations, e.g.,
GDPR [23]. Also interestingly, our analysis on the support page of
informer.com (support.informer.com) reveals that this web service
employs CAPTCHA to impede abusive form submissions. However,
this protection method only affects the form submission process
and does not effectively protect image uploading. As a result, at-
tackers can circumvent the CAPTCHA and proceed with uploading
abusive images through the Presubmit and Preview stages.

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

6 MITIGATION AND DISCUSSION
6.1 Root Cause and Mitigation
The root cause of vulnerable IHM mainly lies in the following two
aspects. First, concerning the upload API aspect, developers often
lack adequate control over user-uploaded images. This deficiency
manifests in various ways, such as the absence of access control,
IP-based rate limiting for request frequency, the frequency of image
uploads, inadequate implementation of CAPTCHA systems, and
more. Second, the backend handling of images frequently overlooks
the investigation of abnormal usage patterns, despite the metadata
associated with the uploaded images. For example, in cases where
images are uploaded during online chats with customer service on
an e-commerce platform, such images should be accessible only
from specific IP addresses and for a limited number of times. Devel-
opers could monitor unusual request behavior to detect instances
of IHMs abuse. Given these root causes, we elaborate on mitigation
strategies as below.
Leverage the client-side cache. In Preview or Callback stage,
developers usually allow users to examine the result after selection
or submission. In our research, we observe 291 web services (e.g.,
online chatting, image searching) first upload the images, store
them on the server-side and render with tag. This server-
side caching may be abused by attackers when a proper expiration
time was not set. To mitigate this issue, we recommend using client-
side caching, through the adoption of Blob object [71] and data
URLs [46]. The Blob interface, which represents immutable raw
binary data, in the File API [71], can be easily used to transform
a user-uploading file to a URL. More specifically, developers can
use URL.createObjectURL(blob) to construct a URL representing
a blob object without uploading such a file to the website, and
this blob URL can be referenced in web components. Alternatively,
developers can utilize base64 encoding to represent chosen images
and display them on webpages. The readAsDataURL API offers the
functionality that converts user input image to Data URLs [46],
which can be used in the src attribute of element.
Set up the access control for uploaded images. In other
use cases, such as online customer service chat or blog editing,
the servers are usually designed to resume the interaction
environments with the clients. In this context, the servers have
to store the users’ uploaded images with server-side caching. Thus,
the attacker inevitably received the server-side image links. Thus,
we recommend the developer set a proper expired time for the
temporarily uploaded images (e.g., 72 hours), or set the image
request allowance. It’s important to note that the wide variety of
services provided by the IHM and the extensive use of NAT/DHCP
means that an IP allowlist might not be suitable for certain use cases.
Furthermore, for scenarios where an image is meant to be viewed
only by the user who submitted it, we recommend implementing
server-side access control, i.e., user-specific image storage, which
could involve naming the image files based on the user’s ID or some
other unique identifier to prevent conflicts or unauthorized access.

Note that while many developers have adopted CAPTCHAs to
guard against abusive form submissions, we’ve observed that this
protection often centers on the form submission itself, rather than
the image uploading process of the IHM . This distinction leads to
two potential vulnerabilities in CAPTCHA protection: (1) If image

uploading vulnerabilities arise prior to the CAPTCHA solving, e.g.,
vulnerability in preview/presubmit stage, while the CAPTCHA en-
forcing the submission stage. (2) Image uploads that occur after
CAPTCHA validation, but image uploading can be triggered inde-
pendently, are still at risk. In such scenarios, CAPTCHAs don’t pre-
vent the image-uploading API from being exploited. To effectively
address these vulnerabilities, mandating CAPTCHA verification
as a prerequisite for image uploading can establish a more robust
defense against misuse.
Align the image hosting content and resource to purpose.
Rate-limiting, or “request allowance", doesn’t entirely prevent the
hosting of explicit content, especially in one-to-one exchanges
between users. Therefore, developers should ensure that the
image hosting content and associated resources align with their
intended purpose. As for the image content, a potential method
to determine if the hosted content violates the policy of the upload
API service is to launch a compliance check between uploaded
images and terms-of-services. This could utilize NLP techniques
to understand the texts in UIs [7, 40] or terms of service [51, 75],
combined with ML/computer vision techniques to recognize the
content of the upload images [31, 76]. For example, the information
collection web service for an online hospital requires medical
record images should be uploaded. The developer can apply the
content classifier (e.g., OCR-based classifier) to automatically
detect abusive uploads. Respecting the metadata of the requested
uploaded image, developers can also be alarmed by investigating
the abnormal patterns. Thus, the developers can monitor the
abnormal request behavior to detect IHMs abuse.
Hide image resource path. Even though the client-side cache can
effectively reduce unnecessary binary transmission between client
and server, and thus mitigate the possible vulnerability, in Presubmit
and Submit stage, it’s inevitable to send the image to the server. For
the web service which did not render the image on the web page,
e.g., the IHM of the anonymous feedback collection service, the key
to mitigating abuse is to not return the full genuine image URL to
the client side. Thus, we suggest the developer leverages the image
identifier (i.e., salt hash of the image binary), which refers to the
uploaded image, instead of the full genuine image resource paths.
Only with this identifier, the abuser can not refer to the genuine
image URL, and thus can not abuse such vulnerability.

6.2 Ethics and Disclosure
Ethical concerns. In our study, to gain an insider’s view ofAIMIEs,
we engaged with open-sourced AIMIEs to upload images to victim
host domains. However, we took several precautions to minimize
the impact on victim websites. First, we limited the number of open-
sourced AIMIEs we tested to only 14, ensuring that we tested each
abused IHM upload API only once. Also for each abused IHM upload
API , we strictly restricted the size of the demonstrated image used
in the experiments to be 10 kB per file, to reduce the impact on
target servers. In total, we uploaded 447 images, amounting to 4.4
MB. We also proactively informed victim domain administrators of
our experiments and provided them with the file names and hashes
of our uploaded images for corresponding removal actions. These
experiments comply with the principles identified in the Menlo
Report, and were approved by our organization’s IRB.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

As for the design and implementation of Viola, we meticulously
crafted it to circumvent any harm to the analyzed targets. Our
vulnerability assessment encompasses both static analysis and dy-
namic interaction. It’s essential to note that websites lacking image
uploading capabilities or those intended solely for image sharing
remain entirely unaffected by our assessments. Furthermore, even
when engaging in real-world analysis, we are stringent in restrict-
ing the number of dynamic testing actions performed on a single
website, allowing us to upload just one image per API. Additionally,
the beacon images deployed in our tests are conspicuously labeled
with the experiment’s purpose and contact information.

Also, to understand the performance of an explicit content clas-
sifier ([76]) and ascertain an optimal threshold (Section 4.3), we
performed manual validation on a randomly selected pool of 400
images (comprising 200 explicit and 200 non-explicit ones). During
this process, team members unavoidably encountered some explicit
images. To uphold ethical standards, we adhered to the guidelines
outlined in the Menlo Report, which dictate that we minimize un-
necessary exposure of annotators to potentially explicit or illegal
images. To ensure this, we distributed the annotation task among
four team members, each tackling a subset of 100 images. This
strategic allocation of work ensured that each individual was ex-
posed to a limited number of explicit images, therebymitigating any
potential impact on their well-being. Moreover, we ensured that an-
notators were well-aware of their option to halt, discontinue, or opt
out of the annotation task at any point. Additionally, throughout
the labeling process, they were encouraged to take regular breaks,
and their advisors consistently checked in on their well-being.
Responsible disclosure. In total, we have identified and reported
abused and vulnerable IHM upload APIs across 311 victim web-
sites (109 from open-sourced AIMIEs, 207 identified by Viola, and
five appeared in both categories). Our disclosure reports include
vulnerability details (POCs, demo videos), root cause analysis, and
actionable steps for mitigating such vulnerabilities. Until August
2023, we received 69 acknowledgments and bounties from victim
website owners. Moreover, we release our code and data of Viola
at [8], offering a lightweight and reliable approach for discovering
image uploading vulnerabilities. We hope that our research will en-
hance awareness regarding this vulnerability and guide developers
toward constructing more secure web applications.

7 RELATEDWORK
Web resource abuse. A number of works have studied the web
resource abuse of the prevalent cybercrime. Previous work mainly
focuses on the abuse of cloud computing services, and related web
infrastructures and services, e.g., domain name system (DNS). For
cloud computing service, Nappa et al. [48] reported over 60% of
the exploit servers belong to cloud hosting services in the drive-
by download attacks. Wang et al. [72] showed that using public
third-party services to perform amplification attacks is more ad-
vantageous than attacking the victims directly. Canali et al. [13]
conducted a study of the web hosting providers about the preven-
tion mechanism of malicious activities. Their results showed that
most of the providers do nothing to detect malicious activities after
registrations. Han et al. [29] reported that a million malware sam-
ples contact one public IP address on the Amazon EC2 Cloud. Lever

et al. [41] conducted a longitudinal study of dynamic analysis traces
of 26.8 million unique malware samples. They reported that the
malware heavily abuses the dynamic DNS service to communicate
with the C&C servers and host malicious content on the Content
Delivery Networks (CDNs). Some studies focused on the upper-
level cloud service with a specific purpose, e.g., shortening links,
and DevOps. Thomas et al. [65] examined the abuse of online social
networks (Twitter). Their study reported that free blog hosting
websites (WordPress, Blogspot) are heavily abused for the short
links hosting of Twitter spam attacks. Li et al. [42] discovered that
continuous integration (CI) platforms have been widely abused for
illicit crypto mining, showing that this abuse spreads 1974 Cijack-
ing instances, 30 campaigns across 12 different cryptocurrencies on
11 mainstream CI platforms. To the best knowledge of us, none of
them have systematically investigated the vulnerabilities of image
uploading and corresponding abusive activities.
Web application vulnerability scanning. Web application vul-
nerability scanners (WAVSs) are automated software tools used to
identify security vulnerabilities in applications that run on web
servers. Traditional commercial scanners, such as Acunetix Web
Vulnerability Scanner [4], WebInspect [63], W3AF [54], ZAP [59],
AppSpider [62], mainly target at the OWASP Top vulnerabilities, for
instance, SQL injection, XSS and CSRF. Recently, research efforts
have been made to improve the scanning performance [18, 22]. For
example, Eriksson et al. [18] developed Black Widow, which iden-
tifies and builds on navigation modeling, traversing, and tracking
inter-state dependencies. Apart from the traditional web vulner-
ability threats, many studies aim to discover the logic flaws in
web components, e.g., the account system and payment system.
Ghasemisharif et al. [24] leveraged Single Sign-On (SSO) account
and session management model, and guide an automated black-box
auditing framework to conduct a large-scale study of flaws across
the SSO ecosystem. Calzavara et al. [12] focused on web application
insecurity due to cryptographic vulnerabilities, they used attack
trees to specify attack conditions against TLS thus scanning the is-
sues on page integrity, authentication credentials and web tracking.
Existing works either focus on the general web security vulnerabil-
ity or on the specific web components issues. However, these works
do not address the new rising threat of image hosting abuse and
cannot model the image life cycle. To the best of our knowledge,
none of the existing work has yet detected image hosting abuse.

8 CONCLUSION
Miscreants are increasingly abusing image hosting modules as
malicious services (AIMIEs) to host illicit images and disseminate
harmful content. This paper presents the first measurement study
of AIMIE services to provide an inside view of such vulnerability.
By collecting and analyzing 89 open-sourced AIMIEs, we reveal the
landscape of AIMIEs and report the evolution and evasiveness of
109 abused IHM upload APIs from reputable companies such as
Alibaba, Tencent, and Bytedance. We find that 1,151 explicit images
are uploaded through 26 IHM upload APIs. In addition, we model
the image upload lifecycle and construct a vulnerability Scanner,
which can effectively and accurately discover 477 vulnerable IHM
upload APIs in the wild. We have reported abused and vulnerable
IHM upload APIs to 311 victim sites, and received acknowledgments

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

from 69 of them until paper submission. Besides, we also provide
actionable suggestions for mitigating such vulnerability.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their in-
sightful comments that helped improve the quality of the paper.
This work was supported in part by the National Key Research
and Development Program (2021YFB3101200), the National Nat-
ural Science Foundation of China (62302101, 62172104, 62172105,
61972099, 62102093, 62102091). Xiaojing Liao was partially sup-
ported by the Grant Thornton Institute and Indiana University
Institute for Advanced Study (IAS). Min Yang is the corresponding
author, a faculty of Shanghai Institute of Intelligent Electronics &
Systems and Engineering Research Center of Cyber Security Audit-
ing and Monitoring, and Shanghai Collaborative Innovation Center
of Intelligent Visual Computing, Ministry of Education, China.

REFERENCES
[1] 2022. PyPI · The Python Package Index. https://pypi.org/.
[2] 2023. requests · PyPI. https://pypi.org/project/requests/.
[3] 0xDkd. 2018. auxpi. https://github.com/0xDkd/auxpi.
[4] Acunetix. 2023. Acunetix | Web Application Security Scanner.

https://www.acunetix.com/.
[5] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. 2020. NXNSAttack: Recur-

sive DNS Inefficiencies and Vulnerabilities. In 29th USENIX Security Symposium
(USENIX Security 20). 631–648.

[6] ALAPI. 2022. ALAPI. https://alapi.cn/api/view/57.
[7] Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and

Tao Xie. 2017. Uiref: analysis of sensitive user inputs in android applications. In
Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 23–34.

[8] Anonymous. 2023. aimie-artifacts. https://github.com/AIMIE-Group/AIMIE.
[9] apachecn. 2019. CDNDrive. https://github.com/apachecn/CDNDrive.
[10] Baidu. 2023. Baidu User Agreement. https://passport.baidu.com/static/passpc-

account/html/protocal.html.
[11] Ultimate Hosts Blacklist. 2022. Ultimate Hosts Blacklist.

https://github.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist.
[12] Stefano Calzavara, Riccardo Focardi, Matus Nemec, Alvise Rabitti, and Marco

Squarcina. 2019. Postcards from the Post-HTTP World: Amplification of HTTPS
Vulnerabilities in the Web Ecosystem. In 2019 IEEE Symposium on Security and
Privacy (SP). 281–298. ISSN: 2375-1207.

[13] Davide Canali, Davide Balzarotti, and Aurélien Francillon. 2013. The role of web
hosting providers in detecting compromised websites. In Proceedings of the 22nd
international conference on World Wide Web. 177–188.

[14] cyrus and. 2022. chrome-remote-interface. https://github.com/cyrus-and/chrome-
remote-interface.

[15] Theresa Degroote. 2014. Water torture: A slow drip dns ddos attack. Technical
Report. tech. rep., Secure64.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] echisan. 2018. wbp4j. https://github.com/echisan/wbp4j.
[18] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black

Widow: Blackbox Data-drivenWeb Scanning. In 2021 IEEE Symposium on Security
and Privacy (SP). 1125–1142.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. 1999. RFC2616: Hypertext Transfer Protocol – HTTP/1.1. USA.

[20] Inc. Flickr. 2022. Flickr Blog. https://blog.flickr.net/.
[21] The Apache Software Foundation. 2002. Maven – Welcome to Apache Maven.

https://maven.apache.org/index.html.
[22] Adonis P.H. Fung, Tielei Wang, K. W. Cheung, and T. Y. Wong. 2014. Scanning

of Real-World Web Applications for Parameter Tampering Vulnerabilities. In
Proceedings of the 9th ACM Symposium on Information, Computer and Commu-
nications Security (ASIA CCS ’14). Association for Computing Machinery, New
York, NY, USA, 341–352.

[23] GDPR. 2022. Right to erasure. https://gdpr-info.eu/art-17-gdpr/.
[24] Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis. 2022. Towards

Automated Auditing for Account and Session Management Flaws in Single Sign-
On Deployments. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 1524–1524.

[25] Inc GitHub. 2022. Github REST API. https://docs.github.com/en/rest.

[26] Google. 2023. Chrome Web Store. https://chrome.google.com/webstore.
[27] Cisco Talos Intelligence Group. 2022. PhishTank. https://phishtank.org/.
[28] haad. 2022. proxychains. https://github.com/haad/proxychains.
[29] Xiao Han, Nizar Kheir, and Davide Balzarotti. 2015. The role of cloud services in

malicious software: Trends and insights. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, 187–204.

[30] Andrew F Hayes and Klaus Krippendorff. 2007. Answering the call for a standard
reliability measure for coding data. Communication methods and measures 1, 1
(2007), 77–89.

[31] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision. 2961–2969.

[32] Imgbb. 2022. Imgbb. https://imgbb.com/.
[33] Google Inc. 2022. Google Safe Browsing. https://developers.google.com/safe-

browsing.
[34] Qianxin Inc. 2022. Sinan. https://sinan.qianxin-inc.cn/.
[35] jd.com. 2022. jd.com. https://www.jd.com/.
[36] jqbaobao. 2022. Made a global CDN map bed for three major manufacturers’

interfaces, and released the source code by the way. https://hostloc.com/thread-
807552-1-1.html.

[37] Judge.me. 2022. Judge.me Product Reviews. https://apps.shopify.com/judgeme.
[38] Christian Kohlschütter and Wolfgang Nejdl. 2008. A densitometric approach to

web page segmentation. In Proceedings of the 17th ACM conference on Information
and knowledge management. 1173–1182.

[39] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 24th Network and
Distributed System Security Symposium (NDSS). 15 pages.

[40] Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing Liao, Xiao Feng Wang,
Tongxin Li, and Xianghang Mi. 2019. Understanding iOS-based crowdturfing
through Hidden UI Analysis. In Proceedings of the 28th USENIX Security Sympo-
sium (USENIX Security). 765–781.

[41] Chaz Lever, Platon Kotzias, Davide Balzarotti, Juan Caballero, and Manos An-
tonakakis. 2017. A lustrum of malware network communication: Evolution and
insights. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 788–804.

[42] Zhi Li, Weijie Liu, Hongbo Chen, XiaoFeng Wang, Xiaojing Liao, Luyi Xing,
Mingming Zha, Hai Jin, andDeqing Zou. 2022. Robbery on devops: Understanding
and mitigating illicit cryptomining on continuous integration service platforms.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2397–2412.

[43] Imgur LLC. 2009. Imgur: The magic of the Internet. https://imgur.com/.
[44] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang,

and Xueqiang Wang. 2020. Demystifying Resource Management Risks in Emerg-
ing Mobile App-in-App Ecosystems. In Proceedings of the 27th ACM SIGSAC
Conference on Computer and Communications Security (CCS). 569–585.

[45] mac cms. 2022. Mac CMS. https://www.maccms.cn/.
[46] MDN. 2022. Data URLs. https://developer.mozilla.org/en-

US/docs/Web/HTTP/Basics_of_HTTP/Data_URLs.
[47] MDN. 2022. The Image Embed element Service Contract.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img.
[48] Antonio Nappa, M Zubair Rafique, and Juan Caballero. 2013. Driving in the

cloud: An analysis of drive-by download operations and abuse reporting. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 1–20.

[49] onji. 2022. Share a self-writing image hosting API of reputable company.
https://www.v2ex.com/t/770087.

[50] OpenCV. 2023. OpenCV: cv::img_hash::PHash Class Reference.
https://docs.opencv.org/3.4/df/d4e/classcv_1_1img__hash_1_1PHash.html.

[51] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards automating risk assessment of mobile applications. In 22nd USENIX
Security Symposium (USENIX Security 13). 527–542.

[52] portswigger. 2021. The Burp Suite family. https://portswigger.net/burp.
[53] Puppeteer. 2020. Puppeteer. https://pptr.dev/.
[54] Andres Riancho. 2018. w3af-open source web application security scanner.

https://w3af.org.
[55] Shopify. 2022. Shopify App Store. https://apps.shopify.com/.
[56] Similarweb. 2023. Website Traffic - Check and Analyze Any Websites | Similarweb.

https://www.similarweb.com/.
[57] sina.com. 2022. sina.com. https://weibo.com/.
[58] Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative research. Sage

publications.
[59] The ZAP Dev Team. 2023. OWASP ZAP. https://www.zaproxy.org/.
[60] Tencent. 2022. Tencent Service Contract. https://www.qq.com/contract.shtml.
[61] tencent. 2022. yzf.qq.com. https://yzf.qq.com/xv/html/login.
[62] Open Text. 2023. AppSpider DAST Tool - Rapid7.

https://www.rapid7.com/products/appspider/.
[63] Open Text. 2023. Fortify WebInspect. https://www.microfocus.com/en-

us/cyberres/application-security/webinspect.
[64] ThedoRap. 2018. Figure-bed. https://github.com/ThedoRap/Figure-bed/.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Geng Hong et al.

[65] Kurt Thomas, Chris Grier, Dawn Song, and Vern Paxson. 2011. Suspended
accounts in retrospect: an analysis of twitter spam. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference. 243–258.

[66] TransparentLC. 2019. WechatMomentScreenshot.
https://github.com/TransparentLC/WechatMomentScreenshot/.

[67] tree sitter. 2022. py-tree-sitter. https://github.com/tree-sitter/py-tree-sitter.
[68] Uomg. 2022. UomgAPI. https://api.uomg.com/.
[69] upimg backup. 2019. upimg-mirror. https://github.com/upimg-backup/upimg-

mirror.
[70] VirusTotal. 2020. VirusTotal. https://www.virustotal.com/.
[71] W3C. 2021. File API. https://www.w3.org/TR/FileAPI/.

[72] Huangxin Wang, Zhonghua Xi, Fei Li, and Songqing Chen. 2016. Abusing Public
Third-Party Services for EDoS Attacks. In 10th USENIX Workshop on Offensive
Technologies (WOOT 16). USENIX Association, Austin, TX, 13 pages.

[73] Weibo. 2023. Weibo Service Usage Agreement. https://weibo.com/signup/v5/protocol.
[74] Wikipedia. 2022. WYSIWYG. https://en.wikipedia.org/wiki/WYSIWYG.
[75] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing Liao, and

Luyi Xing. 2023. Lalaine: Measuring and Characterizing Non-Compliance of
Apple Privacy Labels. In 32nd USENIX Security Symposium (USENIX Security 23).
1091–1108.

[76] Yahoo. 2022. Open nsfw model. https://github.com/yahoo/open_nsfw.
[77] Youngxj. 2022. yum6-Sina Img. https://tools.yum6.cn/Tools/sinaimg/.

Understanding and Detecting Abused Image Hosting Modules as Malicious Services CCS ’23, November 26–30, 2023, Copenhagen, Denmark

A DETAILS OF THE BASELINE METHOD
This regular expression (as shown in Figure 10) is employed in the
regex-based baseline method to match all URLs in the AIMIEs.

1 h t t p [s] ? : / / (? : [a−zA−Z] | [0 − 9] | [$−_@ . & +] | [! ∗ \ (\) ,] | (? : % [0 − 9
a−fA−F][0 −9 a−fA−F])) +

Figure 10: Regular expression tomatch all URLs in the source
codes in AIMIEs

B VIOLA
B.1 Viola Method
Signature-based Locating Web Service Locating. The first step
of locating the web service is to locate the IHMs. However, a com-
prehensive report detailing how web developers implement IHMs
is currently lacking. To address this, we conducted a preliminary
study to comprehend the underlying code patterns of IHMs, which
involved the following steps:

1) For widely-used web development frameworks, we crafted
demo websites featuring basic functionality and examined their
underlying implementations.; 2) We reverse-engineered the imple-
mentation of IHMs on popular websites; 3) We conducted searches
on online Q&A platforms and developer forums, such as GitHub
and Stack Overflow, using keywords like “upload images”, “submit
images”, etc., to find relevant development instructions.

This process allowed us to compile the characteristic signatures
of popular client-side code patterns for image uploading, notably
the <input type=“file”> tag. We employed this signature to
locate the client-side user interface of IHMs.

B.2 Viola Evaluation
Additionally, we compared our lifecycle-based method with a base-
line method without ignoring upload lifecycle. Specifically, the
baseline method first applies Semantic Analyzer to locate a host
web service of an IHMs. It then stimulates the image upload behav-
ior through the same method used by Viola. After that, it employs
a regex, https?://[^\s"’]+?.jpe?g[^\s"’]*, on the network
responses to check for the presence of content similar to the submit-
ted content. Running this baseline approach on the same evaluation

dataset (426,702 webpages in Tranco top 1M), the baseline approach
found 226 vulnerable IHMs (vs 397 by Viola). Wemanually validated
100 of those cases and found 99 are true positives. Similar to the
evaluation of Viola, for the 20 popular websites, this baseline ap-
proach found a total of vulnerable two vulnerable IHMs. In contrast,
our lifecycle approach reports four vulnerable IHMs with the same
targets. This result indicates that the modeling of the image hosting
module lifecycle can significantly detect more vulnerabilities (4 vs
2).
Effectiveness of Image Validator. Here we compare the perfor-
mance of Image Validator under eight different image similarity
metrics (see Table 7). To construct a dataset for evaluation, we
randomly sampled 100 images from popular websites and applied
commonly-used image compression and converting techniques on
them. Specifically, we resized each image by 0.25x, 0.5x, 0.75x, or
compressed image quality by 0.2, 0.5, 0.8, and then converted the
image into formats like JPEG, PNG, BMP, TIFF and WEBP (exclude
its original format), resulting in the creation of 10 similar images
per original image. For each pile of 100 images, we evaluated which
similarity metrics can best distinguish the 10 similar images from
the remaining 99 original images. The similarity threshold is deter-
mined by analyzing the distribution of similarity scores between
the original image and its variations, as well as between the original
image and the different images generated through different similar-
ity metrics. Based on the results, we opted for DCT-based image
perceptual hash [50] to generate and compare image hash values.
This metric with a similarity threshold of 10, demonstrated superior
performance in distinguishing variant images from unrelated ones.

Table 7: Evaluation of image similarity metrics at opti-
mal thresholds. The method-specific threshold was selected
within corresponding ranges.

Methods Threshold Range Step Precision Recall F1-score
DCT-based Perceptual Hash 10 (0,64) 1 98.5% 98.7% 98.4%
Block Mean Hash 21 (0,256) 1 98.3% 98.2% 98.1%
Structural Similarity 0.6 (-1,1) 0.05 97.1% 99.4% 98.0%
Marr-Hildreth Hash 186 (0,1000) 1 96.9% 98.9% 97.6%
Average Hash 5 (0,64) 1 99.1% 95.5% 97.1%
Color Moment Hash 6 (0,1000000) 2 88.4% 88.2% 86.4%
Difference Hash 16 (0,64) 1 69.7% 99.4% 77.2%
Radia Variance Hash 0.85 (0,1) 0.05 89.5% 73.1% 75.7%

	Abstract
	1 Introduction
	2 Background
	2.1 Image Hosting Module
	2.2 Threat Model
	2.3 Scope of Problem

	3 Abused IHM as Malicious Service
	3.1 Overview of AIMIE
	3.2 Methodology
	3.3 Limitations

	4 Measurement
	4.1 Open-sourced AIMIEs
	4.2 Abused IHM Upload API Analysis
	4.3 Images hosted via AIMIEs

	5 Vulnerable IHMs in the Wild
	5.1 Semantic Analyzer
	5.2 Upload Lifecycle Assessor
	5.3 Longitudinal Analyzer
	5.4 Evaluation
	5.5 Findings

	6 Mitigation and Discussion
	6.1 Root Cause and Mitigation
	6.2 Ethics and Disclosure

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Details of the Baseline Method
	B Viola
	B.1 Viola Method
	B.2 Viola Evaluation

